Машинное обучение (сов. бак. ВШЭ-РЭШ 2023) — различия между версиями

Материал из Wiki - Факультет компьютерных наук
Перейти к: навигация, поиск
(Семинары)
(Практические задания)
Строка 104: Строка 104:
 
'''Ссылка''': https://github.com/hse-ds/ml-hse-nes/blob/main/2023/homeworks/homework_2.pdf
 
'''Ссылка''': https://github.com/hse-ds/ml-hse-nes/blob/main/2023/homeworks/homework_2.pdf
  
 +
===Задание 3. Логистическая регрессия ===
 +
Вам предстоит решить несколько задач на реализацию метода логистической регрессии и оценки качества классификации.
 +
 +
'''Мягкий дедлайн''':  16 октября 2023 года 23:59
 +
 +
'''Дедлайн''':  19 октября 2023 года 23:59
 +
 +
'''Ссылка''': https://github.com/hse-ds/ml-hse-nes/blob/main/2023/homeworks/homework_3.ipynb
  
 
== Контрольная работа ==
 
== Контрольная работа ==

Версия 15:01, 3 октября 2023

О курсе

Курс читается для студентов 2-4 курсов совместного бакалавриата ВШЭ-РЭШ в 1-2 модулях.

Карточка курса и программа. (TODO: Обновить)

Репозиторий с материалами курса на GitHub.

Чат в телеграме

Анонимная форма обратной связи

Лекции

Лектор: Михаил Гущин (mhushchyn@hse.ru, @mikhail_h91)

Лекции проходят по вторникам в 16:20 (R205).

Семинары

Группа Преподаватель Учебный ассистент Ссылка на чат Аудитория Время
МО-1 Владимир Бочарников Софья Пирогова Чат R506 среда, 14:40
МО-2 Сергей Корпачев Артём Станкевич Чат R308 суббота, 14:40

Правила выставления оценок

В курсе предусмотрено несколько форм контроля знаний:

  • Практические домашние работы на Python или с теоретическими задачами (всего 6-8 домашних работ)
  • Контрольная работа в середине курса
  • Письменный экзамен

Итоговая оценка вычисляется на основе оценки за работу в семестре и оценки за экзамен:

Oитоговая = Округление(0.5 * ДЗ + 0.2 * КР + 0.3 * Э)

ДЗ — средняя оценка за практические домашние задания

КР — оценка за контрольную работу

Э — оценка за экзамен

Округление арифметическое.

Правила сдачи заданий

За каждый день просрочки после мягкого дедлайна снимается 1 балл. После жёсткого дедлайна работы не принимаются. Даже при опоздании на одну секунду. Сдавайте заранее.

При обнаружении плагиата оценки за домашнее задание обнуляются всем задействованным в списывании студентам, а также подаётся докладная записка в деканат. Следует помнить, что при повторном списывании деканат имеет право отчислить студента.

При наличии уважительной причины пропущенную проверочную можно написать позднее, а дедлайн по домашнему заданию может быть перенесён. Дедлайн по домашнему заданию переносится на количество дней, равное продолжительности уважительной причины. Решение о том, является ли причина уважительной, принимает исключительно учебный офис.


Лекции

Лекция 1. Введение в машинное обучение. KNN. [Слайды]

Лекция 2. Линейная регрессия. Градиентный спуск. [Слайды]

Лекция 3. Линейная классификация. Логистическая регрессия. [Слайды]

Лекция 4. Метрики качества. [Слайды]


Семинары

Семинар 1. Введение в машинное обучение. [Тетрадка] [Colab] [Тетрадка с решением]

Семинар 2. Линейная регрессия. Градиентный спуск. [Тетрадка] [Colab]

Семинар 3. Линейная классификация. Логистическая регрессия. [Тетрадка] [Colab]

Семинар 4. Метрики качества. [Тетрадка] [Colab]

Практические задания

За каждый день просрочки после мягкого дедлайна снимается 1 балл. После жёсткого дедлайна работы не принимаются, но есть исключение. Студенту разрешается два раза сдать домашнее задание после мягкого дедлайна (но до жёсткого) без штрафов.

Задание 1. Введение в машинное обучение

Вам предстоит решить несколько задач на применение библиотек numpy и matplotlob, а также написать свою линейную регрессию.

Мягкий дедлайн: 25 сентября 2023 года 23:59

Дедлайн: 28 сентября 2023 года 23:59

Ссылка: https://github.com/hse-ds/ml-hse-nes/blob/main/2023/homeworks/homework_1.ipynb

Задание 2. Линейная регрессия. Градиентный спуск.

Вам предстоит решить несколько теоретических задач по производным, линейной алгебре, градиентному спуску и линейной регрессии.

Мягкий дедлайн: 02 октября 2023 года 23:59

Дедлайн: 05 октября 2023 года 23:59

Ссылка: https://github.com/hse-ds/ml-hse-nes/blob/main/2023/homeworks/homework_2.pdf

Задание 3. Логистическая регрессия

Вам предстоит решить несколько задач на реализацию метода логистической регрессии и оценки качества классификации.

Мягкий дедлайн: 16 октября 2023 года 23:59

Дедлайн: 19 октября 2023 года 23:59

Ссылка: https://github.com/hse-ds/ml-hse-nes/blob/main/2023/homeworks/homework_3.ipynb

Контрольная работа

[Вопросы к контрольной работе (мидтерму) 2022)]

Порядок проведения контрольной работы и экзамена:

1) При написании работы пользоваться ничем нельзя (closed-book)

2) Каждый студент должен в начале своей работы от руки написать следующую фразу: "Настоящим подтверждаю, что я, Ф.И.О., внимательно изучил и понял все требования к данной контрольной работе и готов их выполнить. Подпись, расшифровка, число". Работы без данной подписи приниматься не будут.

Время написания работы: 1 час 20 минут.

Если прокторы во время проведения работы замечают противоправные или странные действия, за работу снимаются баллы. В случае обнаружения любого вида списывания работа сразу оценивается в 0 баллов.

Содержание работы: теоретические вопросы из списка (возможны измененные формулировки). Контрольная работа и экзамен не включают задачи на программирование. Теоретические вопросы подразумевают развернутые ответы с формулами.

Рекомендации по написанию контрольной работы: Во всех формулах поясните обозначения. На всех графиках подпишите оси. Для всех рисунков поясните, что изображено на них. Во всех задачах оптимизации подпишите, по каким переменным она выполняется. Для всех суммирований подпишите индекс и границы суммирования.


Экзамен

[Вопросы к экзамену 2022]

Порядок проведения контрольной работы и экзамена:

1) При написании работы пользоваться ничем нельзя (closed-book)

2) Каждый студент должен в начале своей работы от руки написать свои Ф.И.О. и группу.

Время написания работы: 1 час 20 минут.

Если прокторы во время проведения работы замечают противоправные или странные действия, за работу снимаются баллы. В случае обнаружения любого вида списывания работа сразу оценивается в 0 баллов.

Содержание работы: теоретические вопросы из списка (возможны измененные формулировки). Контрольная работа и экзамен не включают задачи на программирование. Теоретические вопросы подразумевают развернутые ответы с формулами.

Рекомендации по написанию экзамена: Во всех формулах поясните обозначения. На всех графиках подпишите оси. Для всех рисунков поясните, что изображено на них. Во всех задачах оптимизации подпишите, по каким переменным она выполняется. Для всех суммирований подпишите индекс и границы суммирования.


Дополнительные материалы

Курсы по машинному обучению и анализу данных

Книги

Страницы прошлых лет

Страница курса 2022 года

Страница курса 2021 года

Страница курса 2020 года