Математический анализ 1 2022/2023 (основной поток) — различия между версиями
Ked (обсуждение | вклад) |
Ked (обсуждение | вклад) |
||
Строка 14: | Строка 14: | ||
будут конвертированы семинаристами в 0, 1 или 2 бонусных балла за контрольную соответствующего модуля. | будут конвертированы семинаристами в 0, 1 или 2 бонусных балла за контрольную соответствующего модуля. | ||
+ | |||
+ | [https://drive.google.com/file/d/1WlJG0xJRa_ZEDHv2pTuFpnrGkF0SsR5T/view?usp=share_link '''Программа и регламент 2-го коллоквиума (16.12 -- ЭАД, 19.12 -- ПМИ)'''] | ||
[https://docs.google.com/spreadsheets/d/15SvaHEPp8YMs3JImoiXc6VOkwUDy6oDvcdev1AWFF3A/edit?usp=sharing '''Расписание КР1 (12.11, 18:10)'''] | [https://docs.google.com/spreadsheets/d/15SvaHEPp8YMs3JImoiXc6VOkwUDy6oDvcdev1AWFF3A/edit?usp=sharing '''Расписание КР1 (12.11, 18:10)'''] |
Версия 01:37, 5 декабря 2022
Математический анализ (I -- II модули)
Оценка (О) за семестр выставляется по результатам двух контрольных (за каждую контрольную ставится оценка от 0 до 10, вторая контрольная = экзамен),
двух коллоквиумов (за каждый коллоквиум ставится оценка от 0 до 10) и домашней работы
(после каждого занятия выдается домашнее задание из нескольких задач, оценка от 0 до 10 ставится за весь семестр).
Формула оценки: О = 0.3(Кр1+Кр2) + 0.15(Кл1+Кл2) + 0.1Дз.
Все оценки в формулы подставляются целыми числами, если где-то необходимо округление, то оно осуществляется арифметически.
Также в каждом модуле на семинарах будут проведены 2-3 самостоятельных работ, результаты которых
будут конвертированы семинаристами в 0, 1 или 2 бонусных балла за контрольную соответствующего модуля.
Программа и регламент 2-го коллоквиума (16.12 -- ЭАД, 19.12 -- ПМИ)
Программа 1 коллоквиума (05.11.2022), Расписание 1-го коллоквиума, Контрольная работ 1 (21-22 год)
Семинарские листки: Листок 1, Листок 2, Листок 3, Листок 4, Листок 5, Листок 5+ (повторятельно-подготовительный), Листок 6, Листок 7, Листок 8
Сводные таблицы с оценками
225 | 226 | 227 | 228 | 229 | 2210 | 2211 | 2212 | БЭАД221 | БЭАД222 | БЭАД223 |
---|
Краткая программа курса:
1) Вещественные числа и принцип полноты
2) Предел последовательности
3) Принцип вложенных отрезков и точные верхние и нижние грани
4) Частичные пределы и теорема Больцано
5) Числовые ряды
6) Фундаментальная последовательность и критерий Коши
7) Топология вещественной прямой
8) Предел функции, первый и второй замечательные пределы
9) Локальные свойства непрерывных функций
10) Глобальные свойства непрерывных функций на отрезке: теоремы Вейерштрасса и Коши, равномерная непрерывность
11) Дифференцируемые функции, дифференциал
12) Теоремы Ферма, Ролля, Лагранжа и Коши
13) Правило Лопиталя
14) Формула Тейлора и ряд Тейлора
15) Монотонность и выпуклость
16) Выпуклые функции.
Литература:
В.А. Зорич, Математический Анализ
С.М. Никольский, Курс математического анализа
T. Tao, Analysis I