Теория вероятностей 2022/2023 (основной поток) — различия между версиями
Alexis852 (обсуждение | вклад) м (fix typo) |
Ked (обсуждение | вклад) |
||
Строка 23: | Строка 23: | ||
[https://drive.google.com/file/d/1HEcy1b7fUy1T1YUj4APaY1QKSQlcYv5S/view?usp=sharing '''Листок 5'''], | [https://drive.google.com/file/d/1HEcy1b7fUy1T1YUj4APaY1QKSQlcYv5S/view?usp=sharing '''Листок 5'''], | ||
[https://drive.google.com/file/d/1jDN548VaGtkzv_mOIb0I_BRH_5cNHp2b/view?usp=sharing '''Листок 6'''], | [https://drive.google.com/file/d/1jDN548VaGtkzv_mOIb0I_BRH_5cNHp2b/view?usp=sharing '''Листок 6'''], | ||
− | [https://drive.google.com/file/d/ | + | [https://drive.google.com/file/d/1d5Sl-HuGGVnbYelUMgsoJNZVi6ARV6Od/view?usp=sharing '''Листок 6+ (повторятельно-подготовительный)'''], |
+ | [https://drive.google.com/file/d/1CSnXg3oW5FXFBKUhjFd7fjeEDcnP2LeH/view?usp=share_link '''Листок 7'''] | ||
'''Сводные таблицы с оценками''' | '''Сводные таблицы с оценками''' |
Версия 02:56, 10 ноября 2022
Теория вероятностей
Оценка (О) за семестр выставляется по результатам двух контрольных (за каждую контрольную ставится оценка от 0 до 10, вторая контрольная = экзамен),
двух коллоквиумов (за каждый коллоквиум ставится оценка от 0 до 10) и домашней работы
(на каждой неделе выдается домашнее задание из нескольких задач, оценка от 0 до 10 ставится за весь семестр).
Формула оценки: О = 0.3(Кр1+Кр2) + 0.15(Кл1+Кл2) + 0.1Дз.
Все оценки в формулы подставляются целыми числами, если где-то необходимо округление, то оно осуществляется арифметически.
Программа 1 коллоквиума (22.10.2022), Расписание коллоквиума 1
Семинарские листки: Листок 1. Листок 2, Листок 3, Листок 4, Листок 5, Листок 6, Листок 6+ (повторятельно-подготовительный), Листок 7
Сводные таблицы с оценками
213 | 215 | 216 | 217 | 218 | 219 | 2110 |
---|
Краткая программа курса:
1) Дискретное вероятностное пространство и вероятность
2) Условная вероятность, формула полной вероятности, формула Байеса
3) Случайные величины на дискретном вероятностном пространстве
4) Математическое ожидание и дисперсия случайной величины на дискретном вероятностном пространстве
5) Схема Бернулли, предельные теоремы Муавра--Лапласа и Пуассона
6) Общее понятие вероятностного пространства: сигма алгебра событий и вероятностная мера
7) Случайная величина на общем вероятностном пространстве, распределение, функция распределения
8) Совместное распределение случайных величин, независимость, формула свертки
9) Математическое ожидание в общем случае, вычисление математического ожидания в случае, когда распределение случайной величины имеет плотность
10) Закон больших чисел в слабой форме, теорема Вейерштрасса о приближении непрерывной функции многочленами и тригонометрическими многочленами
11) Сходимости случайных величин и закон больших чисел
12) Характеристические функции и центральная предельная теорема
13) Неравенство типа Хёфдинга-Чернова
14) Многомерное нормальное распределение
15) Условное математическое ожидание
Литература:
Феллер В. Введение в теорию вероятностей и её приложения.
Ширяев А.Н. Вероятность.
Боровков А.А. Теория вероятностей
Севастьянов Б.А. Курс теории вероятностей и математической статистики