Теория вероятностей 2022/2023 (основной поток) — различия между версиями
Ked (обсуждение | вклад) |
Ked (обсуждение | вклад) |
||
Строка 18: | Строка 18: | ||
[https://drive.google.com/file/d/1fIyvXaPpmBf7DY0pRhWP8v8uAtTA5EEQ/view?usp=sharing '''Листок 3'''], | [https://drive.google.com/file/d/1fIyvXaPpmBf7DY0pRhWP8v8uAtTA5EEQ/view?usp=sharing '''Листок 3'''], | ||
[https://drive.google.com/file/d/1v6ZCcCxEmGfvSSCoZW3sTjYaSI0dGan9/view?usp=sharing '''Листок 4'''], | [https://drive.google.com/file/d/1v6ZCcCxEmGfvSSCoZW3sTjYaSI0dGan9/view?usp=sharing '''Листок 4'''], | ||
− | [https://drive.google.com/file/d/ | + | [https://drive.google.com/file/d/1HEcy1b7fUy1T1YUj4APaY1QKSQlcYv5S/view?usp=sharing '''Листок 5'''] |
'''Сводные таблицы с оценками''' | '''Сводные таблицы с оценками''' |
Версия 22:33, 1 октября 2022
Теория вероятностей
Оценка (О) за семестр выставляется по результатам двух контрольных (за каждую контрольную ставится оценка от 0 до 10, вторая контрольная = экзамен),
двух коллоквиумов (за каждый коллоквиум ставится оценка от 0 до 10) и домашней работы
(на каждой неделе выдается домашнее задание из нескольких задач, оценка от 0 до 10 ставится за весь семестр).
Формула оценки: О = 0.3(Кр1+Кр2) + 0.15(Кл1+Кл2) + 0.1Дз.
Все оценки в формулы подставляются целыми числами, если где-то необходимо округление, то оно осуществляется арифметически.
Семинарские листки: Листок 1. Листок 2, Листок 3, Листок 4, Листок 5
Сводные таблицы с оценками
Краткая программа курса:
1) Дискретное вероятностное пространство и вероятность
2) Условная вероятность, формула полной вероятности, формула Байеса
3) Случайные величины да дискретном вероятностном пространстве
4) Математическое ожидание и дисперсия случайной величины на дискретном вероятностном пространстве
5) Схема Бернулли, предельные теоремы Муавра--Лапласа и Пуассона
6) Общее понятие вероятностного пространства: сигма алгебра событий и вероятностная мера
7) Случайная величина на общем вероятностном пространстве, распределение, функция распределения
8) Совместное распределение случайных величин, независимость, формула свертки
9) Математическое ожидание в общем случае, вычисление математического ожидания в случае, когда распределение случайной величины имеет плотность
10) Закон больших чисел в слабой форме, теорема Вейерштрасса о приближении непрерывной функции многочленами и тригонометрическими многочленами
11) Сходимости случайных величин и закон больших чисел.
12) Характеристические функции и центральная предельная теорема.
13) Неравенство типа Хёфдинга-Чернова.
14) Многомерное нормальное распределение.
15) Условное математическое ожидание.
Литература:
Феллер В. Введение в теорию вероятностей и её приложения.
Ширяев А.Н. Вероятность.
Боровков А.А. Теория вероятностей
Севастьянов Б.А. Курс теории вероятностей и математической статистики