Linear Algebra for Data Science (2022) — различия между версиями

Материал из Wiki - Факультет компьютерных наук
Перейти к: навигация, поиск
м (маленько поменял ссылки)
(Первый семинар, обновил ссылки)
Строка 41: Строка 41:
  
 
===Seminars===
 
===Seminars===
 +
All lectures you will find [https://github.com/addicted-by/hse_courses/raw/main/1st_year/term1/module1/linear_algebra_data_science/seminars_linear_algebra_for_ds.pdf here]
 
{| class="wikitable"
 
{| class="wikitable"
 
|-
 
|-
! Seminar!! Date !!Topics !! Materials !! Reading time !! GitHub (for changes)  
+
! Seminar!! Date !! Topics !! Download materials !! Read Materials !! Pages !!  Reading time !! GitHub (for changes)  
 
|-
 
|-
| Seminar 1 || 09.09.22 || Pseudoinverse matrices. Skeletonization. Singular value decomposition (SVD) || ''soon'' || || [https://github.com/addicted-by/hse_courses/tree/main/1st_year/term1/module1/linear_algebra_data_science GitHub link]
+
| Seminar 1 || 09.09.22 || Pseudoinverse matrices. Skeletonization. Singular value decomposition (SVD) || [https://github.com/addicted-by/hse_courses/raw/main/1st_year/term1/module1/linear_algebra_data_science/seminars/seminar1_linear_algebra_for_ds.pdf Click] || [https://github.com/addicted-by/hse_courses/blob/main/1st_year/term1/module1/linear_algebra_data_science/seminars/seminar1_linear_algebra_for_ds.pdf Click] || 1p || 3min || [https://github.com/addicted-by/hse_courses/tree/main/1st_year/term1/module1/linear_algebra_data_science/seminars/seminar1.tex GitHub link]
 
|-
 
|-
| Seminar 2 || 16.09.22 || || || ||  
+
| Seminar 2 || 16.09.22 || || || || ||
 
|}
 
|}
 +
 
===[https://github.com/addicted-by/hse_courses/tree/main/1st_year/term1/module1/linear_algebra_data_science/references/references.pdf References]===
 
===[https://github.com/addicted-by/hse_courses/tree/main/1st_year/term1/module1/linear_algebra_data_science/references/references.pdf References]===
 
===='''<span style="color:red">Main literature</span>'''====
 
===='''<span style="color:red">Main literature</span>'''====

Версия 23:59, 11 сентября 2022


General information

One semester course. 6 credits.

Lecturer: Dmitri Piontkovski (Дмитрий Игоревич Пионтковский)

Class teacher: Vsevolod Chernyshev (Всеволод Леонидович Чернышев)

Telegram channel

Schedule

Type Day of week Time Place
Lectures Friday 18:10-19:30 S224, Pokrovsky Blvd. 11 (Покровский б-р 11)
Seminars Friday 19:40-21:00 S224, Pokrovsky Blvd. 11 (Покровский б-р 11)

Grading system

Final Grade = 0.5 * Test1 + 0.5 * Test2 + Bonus (for a talk, ≤ 5) + Bonus (for classes, ≤1..2)

Tests: unique for everyone

Topics on which you can prepare a talk: on your own (based on your experience) or from list: will be published soon

Lectures

All lectures you will find here

Lecture Date Topics Download materials Read Materials Pages Reading time GitHub (for changes)
Lecture 1 09.09.22 Distinctive features of applied linear algebra.
Problems with real data. Pseudoinverse matrices. Skeletonization.
Click Click 3p 7 min read GitHub link
Lecture 2 16.09.22

Seminars

All lectures you will find here

Seminar Date Topics Download materials Read Materials Pages Reading time GitHub (for changes)
Seminar 1 09.09.22 Pseudoinverse matrices. Skeletonization. Singular value decomposition (SVD) Click Click 1p 3min GitHub link
Seminar 2 16.09.22

References

Main literature

Additional literature

  • Винберг Э.Б., Курс алгебры, М., изд. МГУ, 2002 (и последующие издания);
  • Бахвалов Н., Жидков Н., Кобельков Н., Численные методы, М., изд. Бином, 2003 (или другой год издания);
  • Колмогоров А.Н., Фомин С.В., Элементы теории функций и функционального анализа, М., изд. Наука, 1976 (или другой год издания);
  • Aleskerov F., Ersel H., Piontkovski D. Linear Algebra for Economists. Berlin—Heidelberg, Springer, 2011;
  • Bryan, K. and Leise, T., 2006. The $25,000,000,000 eigenvector: The linear algebra behind Google. SIAM review, 48(3), pp.569-581;
  • D. Cox, J. Little, and D. O’Shea. Ideals, varieties, and algorithms: an introduction to computational algebraic geometry and commutative algebra. Springer Science & Business Media, 2013.