Linear Algebra for Data Science (2022) — различия между версиями

Материал из Wiki - Факультет компьютерных наук
Перейти к: навигация, поиск
м (added day of week)
м (англ адрес)
Строка 16: Строка 16:
 
! Type !! Day of week !! Time !! Place
 
! Type !! Day of week !! Time !! Place
 
|-
 
|-
| Lectures || Friday || 18:10-19:30 || S224, Покровский б-р, д. 11
+
| Lectures || Friday || 18:10-19:30 || S224, Pokrovsky Blvd. 11 (Покровский б-р 11)
 
|-
 
|-
| Seminars || Friday || 19:40-21:00 || S224, Покровский б-р, д. 11
+
| Seminars || Friday || 19:40-21:00 || S224, Pokrovsky Blvd. 11 (Покровский б-р 11)
 
|}
 
|}
  

Версия 02:05, 11 сентября 2022

Linear Algebra for Data Science

General information

One semester course. 6 credits.

Lecturer: Dmitri Piontkovski

Class teacher: Vsevolod Chernyshev

Telegram channel

Schedule

Type Day of week Time Place
Lectures Friday 18:10-19:30 S224, Pokrovsky Blvd. 11 (Покровский б-р 11)
Seminars Friday 19:40-21:00 S224, Pokrovsky Blvd. 11 (Покровский б-р 11)

Grading system

Final Grade = 0.5 * Test1 + 0.5 * Test2 + Bonus (for a talk, ≤ 5) + Bonus (for classes, ≤1..2)

Tests: unique for everyone

Topics on which you can prepare a talk: on your own (based on your experience) or from list: will be published soon

Lectures

All lectures you will find here

Lecture Date Topics Materials Reading time GitHub (for changes)
Lecture 1 09.09.22 Distinctive features of applied linear algebra. Problems with real data. Pseudoinverse matrices. Skeletonization. Click 7 min read GitHub link
Lecture 2 16.09.22

Seminars

Seminar Date Topics Materials Reading time GitHub (for changes)
Seminar 1 09.09.22 Pseudoinverse matrices. Skeletonization. Singular value decomposition (SVD) soon GitHub link
Seminar 2 16.09.22

References

Main literature

Additional literature

  • Винберг Э.Б., Курс алгебры, М., изд. МГУ, 2002 (и последующие издания);
  • Бахвалов Н., Жидков Н., Кобельков Н., Численные методы, М., изд. Бином, 2003 (или другой год издания);
  • Колмогоров А.Н., Фомин С.В., Элементы теории функций и функционального анализа, М., изд. Наука, 1976 (или другой год издания);
  • Aleskerov F., Ersel H., Piontkovski D. Linear Algebra for Economists. Berlin—Heidelberg, Springer, 2011;
  • Bryan, K. and Leise, T., 2006. The $25,000,000,000 eigenvector: The linear algebra behind Google. SIAM review, 48(3), pp.569-581;
  • D. Cox, J. Little, and D. O’Shea. Ideals, varieties, and algorithms: an introduction to computational algebraic geometry and commutative algebra. Springer Science & Business Media, 2013.