Математическое моделирование 22 — различия между версиями

Материал из Wiki - Факультет компьютерных наук
Перейти к: навигация, поиск
(2. Дифференциальная геометрия)
(7. Метод малого параметра)
Строка 165: Строка 165:
  
 
1. Найфэ А.Х. - Методы возмущений. М.: Мир, 1976
 
1. Найфэ А.Х. - Методы возмущений. М.: Мир, 1976
 +
 +
2. Моисеев Н.Н. - Асимптотические методы нелинейной механики. М.: Наука, 1981
 +
 +
3.
  
 
== Занятия ==
 
== Занятия ==

Версия 15:14, 20 января 2022

О курсе

Данный курс Математическое моделирование читается во 2-ом семестре 2021/2022 учебного года на Факультете компьютерных наук НИУ ВШЭ для специализации Математическая инженерия.

Курс состоит из следующих перемежающихся друг с другом разделов:

  • собственно модели (вариационное исчисление, дифференциальная геометрия, физика),
  • точные методы исследования моделей (алгебраические, аналитические),
  • численные методы исследования моделей.

Рассчитан на 1 семестр (2 модуля).

Область знаний, которую можно было бы назвать математическим моделированием, изучает как сами математические модели, так и общие закономерности их построения и методы анализа.

Как известно, любая наука в процессе своего становления проходит путь от классификации изучаемых объектов (примеры таких классификаций мы можем видеть в астрономии, биологии, химии) к их математическому описанию. По мнению А.Н. Уайтхеда: всякая наука по мере развития и совершенствования ее методов становится математической в своих основных понятиях.

Наиболее долгий и плодотворный путь в этом направлении прошла физика, влиянием которой проникнуты многие разделы математики. Можно даже сказать, что математика и физика развивались параллельно, взаимно обогащая друг друга идеями и методами. Поэтому выбор физики как плацдарма для курса математического моделирования вполне закономерен. С другой стороны, конечно, математическое моделирование не есть физика. Мы берем из физики лишь сами модели, оставляя физикам мотивировки и интерпретации.

План курса

В рамках семестрового курса мы вряд ли имеем возможность вникать в изучаемые темы слишком глубоко. Многие из представленных ниже тем в отдельности могли бы претендовать на семестровый курс, или даже более. Наш курс следует рассматривать как не более, чем знакомство с некоторыми задачами и методами математического моделирования. Приведенные в каждой теме литературные ссылки могут быть полезны для более детального изучения (эти книги рекомендуется по крайней мере бегло просматривать, чтобы составить себе общее представление). Дополнительные, более конкретные ссылки приведены в списках задач.

0. Введение в математическое моделирование

Задачи

Занятия 1,2 (17.01):

0.1 Общее представление о математической модели.

0.2 Корректность по Адамару.

0.3 Математическая модель как система уравнений.

0.4 Пример алгебраического уравнения: уравнение Кеплера.

Занятия 3,4 (24.01):

0.5 Примеры моделей, связанных с ОДУ

0.6 Дифференциальные операции векторного анализа

0.7 Примеры моделей, связанных с УрЧП

0.8 Примеры моделей, некорректных по Адамару

Литература (вообще по предмету математическое моделирование):

1. Самарский А.А., Михайлов А.П. - Математическое моделирование. М.: Физматлит, 2001

2. Зарубин В.С. - Математическое моделирование в технике. М.: Изд-во МГТУ им. Баумана, 2003

3. Амелькин В.В., Садовский А.П. - Математические модели и дифференциальные уравнения. Минск: Выш. школа, 1982

1. Вариационное исчисление

[ Задачи]

1.1 Понятие непрерывного функционала

1.2 Примеры функционалов и вариационных задач

1.3 Механическая система, функция Лагранжа и функционал действия

1.4 Дифференциал (вариация) функционала по Фреше

1.5 Основные леммы вариационного исчисления

1.6 Экстремали функционала. Уравнение Эйлера

Литература:

1. Гельфанд И.М., Фомин С.В. - Вариационное исчисление. М.: Физматлит, 1961

2. Смирнов В.И. - Курс высшей математики. Том 4 часть 1. М.: Наука, 1974. Глава 2

3. Ландау Л.Д., Лифшиц Е.М. - Курс теоретической физики. Том 1. Механика.

4. Дубровин Б.А., Новиков С.П., Фоменко А.Т. - Современная геометрия. М.: URSS, 2013. Том 1. Главы 5, 6

2. Дифференциальная геометрия

[ Задачи]

2.1 Плоская кривая, ее кривизна

2.2 Пространственная кривая. Кривизна и кручение

2.3 Поверхность и метрика на ней

2.4 Вторая квадратичная форма поверхности

2.5 Уравнения Гаусса и Петерсона - Кодацци

2.6 Главные направления и кривизны

2.7 Геодезические линии

2.8 Параллельный перенос вектора вдоль линии

Литература:

1. Фиников С.П. - Теория поверхностей. М.: ЛЕНАНД, 2016

2. Дубровин Б.А., Новиков С.П., Фоменко А.Т. - Современная геометрия. М.: URSS, 2013. Том 1. Главы 1, 2

3. Алексеевский Д.В., Виноградов А.М., Лычагин В.В. - Основные идеи и понятия дифференциальной геометрии // Итоги науки и техн. Соврем. пробл. мат. Фундам. направления, том 28, Геометрия-1. М.: ВИНИТИ, 1988. Главы 1,2

4. Савелов А.А. - Плоские кривые. М.: ЛИБРОКОМ, 2014

5. Кривошапко С.Н., Иванов В.Н., Халаби С.М. - Аналитические поверхности. М.: Наука, 2006

3. УрЧП математической физики

Литература:

1. Франк Ф., Мизес Р. - Дифференциальные и интегральные уравнения математической физики. М-Л: ОНТИ, 1937

2. Тихонов А.Н., Самарский А.А. - Уравнения математической физики. М.: Наука, 2004

3. Годунов С.К. - Уравнения математической физики. М.: Наука, 1971

4. Задача Коши для УрЧП

Литература:

1. Хартман Ф. - Обыкновенные дифференциальные уравнения. М.: Мир, 1970. Глава 6

2. Курант Р. - Уравнения с частными производными. М.: Мир, 1964. Глава 1 §7, глава 2

3. Рашевский П.К. - Геометрическая теория уравнений с частными производными. М.: УРСС, 2012

4. Фиников С.П. - Метод внешних форм Картана. М.-Л.: ОГИЗ, 1948.

5. Краевые задачи для УрЧП

Литература:

1. Тихонов А.Н., Самарский А.А. - Уравнения математической физики. М.: Наука, 2004

2. Годунов С.К. - Уравнения математической физики. М.: Наука, 1971

3. Курант Р. - Уравнения с частными производными. М.: Мир, 1964

4. Гахов Ф.Д. - Краевые задачи. М.: Физматлит, 1963

5. Самарский А.А., Гулин А.В. - Численные методы. М.: Наука, 1989

6. УрЧП 2-го порядка

Литература:

1. Курант Р. - Уравнения с частными производными. М.: Мир, 1964

2. Тихонов А.Н., Самарский А.А. - Уравнения математической физики. М.: Наука, 2004

3. Годунов С.К. - Уравнения математической физики. М.: Наука, 1971

4. Самарский А.А., Гулин А.В. - Численные методы. М.: Наука, 1989

7. Метод малого параметра

Литература:

1. Найфэ А.Х. - Методы возмущений. М.: Мир, 1976

2. Моисеев Н.Н. - Асимптотические методы нелинейной механики. М.: Наука, 1981

3.

Занятия

Занятия проводятся в смешанном формате, без разделения материала на теорию / практику. Теоретический материал сопровождается практическим решением задач как аналитически (вручную или в системе компьютерной алгебры), так и численно (например, в питоне).

Записи занятий выкладываются в [ плейлист]

Формы контроля

По каждой теме выдается список задач, который рекомендуется рассматривать как большое домашнее задание. После прохождения темы (кроме Введения) проводится контрольная работа.

Текущие оценки за контрольные выставляются в [ гугл-таблицу]

В конце семестра предусмотрен экзамен, имеющий формат большой контрольной работы по всему материалу курса.

Итоговая оценка = 0.7 К + 0.3 Э