Машинное обучение (ФЭН) - 2021-2022 — различия между версиями

Материал из Wiki - Факультет компьютерных наук
Перейти к: навигация, поиск
м (Prolongate hw3 deadline)
(Add lecture 8 and tuesday's seminar videos)
Строка 101: Строка 101:
 
'''[https://youtu.be/Amm-LR9OkL0?list=PLEwK9wdS5g0qi14fXKFnFzruUDg3nl6db Лекция 7].''' ''(12.10.2021)'' Снижение размерности | [https://github.com/Murcha1990/ML_Econom_2021-2022/blob/main/Лекции/Lection_7.pdf Lecture7.pdf]
 
'''[https://youtu.be/Amm-LR9OkL0?list=PLEwK9wdS5g0qi14fXKFnFzruUDg3nl6db Лекция 7].''' ''(12.10.2021)'' Снижение размерности | [https://github.com/Murcha1990/ML_Econom_2021-2022/blob/main/Лекции/Lection_7.pdf Lecture7.pdf]
  
'''Лекция 8.''' Снижение размерности
+
'''[https://youtu.be/vyIdAjcOFrE?list=PLEwK9wdS5g0qi14fXKFnFzruUDg3nl6db Лекция 8].''' ''(26.10.2021)'' kNN, Решающие деревья | [https://github.com/Murcha1990/ML_Econom_2021-2022/blob/main/Лекции/Lection_8.pdf Lecture8.pdf]
  
 
'''Лекция 9.''' Решающие деревья
 
'''Лекция 9.''' Решающие деревья
Строка 148: Строка 148:
 
* [https://youtu.be/y_44m-JoWQ0?list=PLEwK9wdS5g0qi14fXKFnFzruUDg3nl6db Липатов Иван (Пн, 11.10.2021)]
 
* [https://youtu.be/y_44m-JoWQ0?list=PLEwK9wdS5g0qi14fXKFnFzruUDg3nl6db Липатов Иван (Пн, 11.10.2021)]
 
* [https://youtu.be/X7_Cegs_5x0?list=PLEwK9wdS5g0qi14fXKFnFzruUDg3nl6db Кантонистова Елена (Вт, 12.10.2021)]
 
* [https://youtu.be/X7_Cegs_5x0?list=PLEwK9wdS5g0qi14fXKFnFzruUDg3nl6db Кантонистова Елена (Вт, 12.10.2021)]
* [https://youtu.be/8WV9TYO-5HU?list=PLEwK9wdS5g0qi14fXKFnFzruUDg3nl6db Ананьева Марина (Пт, 13.10.2021)]
+
* [https://youtu.be/8WV9TYO-5HU?list=PLEwK9wdS5g0qi14fXKFnFzruUDg3nl6db Ананьева Марина (Ср, 13.10.2021)]
  
 
'''Семинар 7.''' Обсуждение feature extraction и feature selection
 
'''Семинар 7.''' Обсуждение feature extraction и feature selection
 +
* [ Липатов Иван (Пн, 25.10.2021)]
 +
* [https://youtu.be/84HwYIJ8aDU?list=PLEwK9wdS5g0qi14fXKFnFzruUDg3nl6db Кантонистова Елена (Вт, 26.10.2021)]
 +
* [ Ананьева Марина (Ср, 27.10.2021)]
  
 
'''Семинар 8.''' Решение теоретико-практических задач
 
'''Семинар 8.''' Решение теоретико-практических задач

Версия 22:55, 26 октября 2021

О курсе

Преподаватели:

Лекции - Кантонистова Елена Олеговна

Семинары - Кантонистова Елена Олеговна, Ананьева Марина Евгеньевна, Липатов Иван Константинович

Лекции и семинары

Канал курса: https://t.me/ml_econom

Лекции проводятся в Zoom по вторникам в 13:00: Zoom

Все материалы лекций и семинаров находятся здесь: https://github.com/Murcha1990/ML_Econom_2021-2022

Ссылки на видеозаписи занятий

Записи лекций и семинаров: https://www.youtube.com/playlist?list=PLEwK9wdS5g0qi14fXKFnFzruUDg3nl6db
На данный момент, очные занятия проводятся только в учебной группе у Ивана Липатова.

Как связаться с преподавателями и куда сдавать домашки

Группа Ссылка Преподаватель Учебный ассистент Инвайт в anytask Чат в telegram
Понедельник 9:30 offline in R612 Иван Липатов Савелий Прохоров ra2bp0A Чат МО ФЭН1
Вторник 14:40 Zoom Елена Кантонистова Никита Патов, Юлия Яхина bOfb5f1 Чат МО ФЭН2
Среда 9:30 Zoom Марина Ананьева Максим Гудзикевич WssQgOY

Чат МО ФЭН3

Правила выставления оценок

В курсе предусмотрено несколько форм контроля знания:

  • самостоятельные работы на семинарах (пятиминутки);
  • коллоквиум в сессию первого модуля (письменный);
  • домашние задания (в том числе соревнование на Kaggle);
  • экзамен в сессию второго модуля (письменный).

Все работы оцениваются в 10 баллов.


Итоговая оценка вычисляется на основе оценки за работу в семестре и оценки за экзамен:

0.3 * Домашнее задание + 0.2 * Коллоквиум + 0.2 * Работа на семинаре + 0.3 * Экзамен


  • Активная работа на семинаре добавляет +3 балла к следующей пятиминутке (максимум за пятиминутку в любом случае 10 баллов).
  • 20% слушателей с наибольшим накопленным баллом получают автоматом 10 баллов за курс.

Коллоквиум

Коллоквиум будет проходить в сессию первого модуля 22.10.2021 (Пт) на первой паре в 9:30.
Онлайн (в зуме), в письменной форме (на листочке).

Общая информация:

  • Коллоквиум рассчитан на 75 минут (1 час 15 мин), еще 5 минут у вас будет на загрузку решения в Anytask.
  • Коллоквиум оценивается в 10 баллов и весит 20% от итоговой оценки за курс.
  • Если мы заподозрим, что вы списали, то и вы, и человек, поделившийся решением, получаете 0 баллов. В случае, если вы не согласны с обвинениями в списывании, вы можете защитить работу устно: в этом случае мы спросим решение абсолютно любого задания из вашей работы, а также можем попросить решить похожее задание не из варианта коллоквиума.

Описание заданий:

  • В заданиях 1 и 2 (с выбором вариантов ответа) необходимо указать варианты ответов, которые считаете верными, а также кратко обосновать, почему указанные варианты ответов верные, а остальные - нет.
  • В задании 3 (теоретическое без выбора ответа) необходимо дать максимально подробный и развёрнутый ответ.
  • В задании 4 (задача или пример) необходимо максимально подробно изложить ваши рассуждения и привести вычисления.
  • В задании 5 (задание на написание кода) старайтесь писать понятный код с интерпретируемыми обозначениями и названиями. Код пишется на листочке с комментариями. За ошибки в синтаксисе баллы НЕ снижаем.

Подготовительный вариант вы можете посмотреть здесь: https://docs.google.com/document/d/1xErmREQt0z9ab5plpMO_AYSv0xZtXi7rwcwMi5rZUw4/edit

Запись консультации здесь: YouTube

Экзамен

Экзамен будет проходить в сессию второго модуля. Экзамен проходит в письменном виде.

Подробности будут объявлены позже.

Лекции

Материалы лекций: https://github.com/Murcha1990/ML_Econom_2021-2022/tree/main/Лекции

Плейлист с лекциями и семинарами: https://youtube.com/playlist?list=PLEwK9wdS5g0qi14fXKFnFzruUDg3nl6db


Лекция 1. (03.09.2021) Введение в машинное обучение. | Lecture1.pdf

Лекция 2. (07.09.2021) Линейная регрессия, градиентный спуск. | Lecture2.pdf

Лекция 3. (14.09.2021) Метрики качества регрессии. | Lecture3.pdf

Лекция 4. (21.09.2021) Линейные классификаторы (1). | Lecture4.pdf

Лекция 5. (28.09.2021) Линейные классификаторы (2). | Lecture5.pdf

Лекция 6. (05.10.2021) Многоклассовая классификация. Нелинейные модели. Калибровка вероятностей. | Lecture6.pdf

Лекция 7. (12.10.2021) Снижение размерности | Lecture7.pdf

Лекция 8. (26.10.2021) kNN, Решающие деревья | Lecture8.pdf

Лекция 9. Решающие деревья

Лекция 10. Бэггинг

Лекция 11. Бустинг

Лекция 12. Временные ряды.

Лекция 13. Кластеризация и визуализация данных.

Лекция 14. Введение в нейронные сети.

Семинары

Материалы семинаров: https://github.com/Murcha1990/ML_Econom_2021-2022/tree/main/Семинары

Общий плейлист видео с семинаров и лекций: YouTube


Семинар 1. Основы линейной алгебры и матричного дифференцирования | GitHub

Семинар 2. Одномерная регрессия ручками, градиентный спуск | GitHub

Семинар 3. Вывод оптимальных констант некоторых функций потерь. Обсуждение предобработки данных | GitHub

Семинар 4. Задача бинарной классификации, Подготовка данных. | GitHub

Семинар 5. Теоретические задачи на персептрон и логистическую регрессию | GitHub

Семинар 6. Решение теоретико-практических задач | GitHub

Семинар 7. Обсуждение feature extraction и feature selection

Семинар 8. Решение теоретико-практических задач

Семинар 9. Решение теоретико-практических задач

Семинар 10. Решение теоретико-практических задач

Семинар 11. Бустинг и его имплементации

Семинар 12. Catboost

Семинар 13. Временные ряды

Семинар 14. Кластеризация

Домашние задания

На курсе планируется 7 домашних заданий. Формула вычисления итоговой оценки: взвешенное среднее из 6 домашних заданий с максимальными баллами.

Каждое домашнее задание имеет индивидуальный вес, который будет появляться одновременно с появлением очередного домашнего задания.

Все домашние работы, а также пятиминутки в начале семинаров необходимо сдавать в Anytask.

Домашняя работа 1. Линейная регрессия и векторное дифференцирование | Дедлайн - 29 сентября в 23:59

Домашняя работа 2. ML Pipeline | Дедлайн - 13 октября в 23:59

Домашняя работа 3. Модели классификации и оценка их качества | Дедлайн - 31 октября в 23:59 7 ноября в 23:59

Домашняя работа 4.

Домашняя работа 5.

Домашняя работа 6.

Домашняя работа 7.

Полезные материалы

Книги

  • Hastie T., Tibshirani R, Friedman J. The Elements of Statistical Learning (2nd edition). Springer, 2009.r, 2009.
  • Bishop C. M. Pattern Recognition and Machine Learning. Springer, 2006.
  • Mohri M., Rostamizadeh A., Talwalkar A. Foundations of Machine Learning. MIT Press, 2012.
  • Murphy K. Machine Learning: A Probabilistic Perspective. MIT Press, 2012.
  • Mohammed J. Zaki, Wagner Meira Jr. Data Mining and Analysis. Fundamental Concepts and Algorithms. Cambridge University Press, 2014.
  • Willi Richert, Luis Pedro Coelho. Building Machine Learning Systems with Python. Packt Publishing, 2013.

Курсы по машинному обучению и анализу данных