Recsys 2020 2021 — различия между версиями

Материал из Wiki - Факультет компьютерных наук
Перейти к: навигация, поиск
(Материалы курса)
(Материалы курса)
Строка 35: Строка 35:
 
| style="background:#eaecf0;" | '''1''' || Введение в рекомендательные системы || [https://www.dropbox.com/s/osig5de9o2nm7ok/RecSysIntro2020.pdf?dl=0 Слайды] ||  || ||
 
| style="background:#eaecf0;" | '''1''' || Введение в рекомендательные системы || [https://www.dropbox.com/s/osig5de9o2nm7ok/RecSysIntro2020.pdf?dl=0 Слайды] ||  || ||
 
|-
 
|-
| style="background:#eaecf0;" | '''2''' || Метод скользящего контроля для оценки качества рекомендаций || [https://www.dropbox.com/s/0fyhrktzj8lmu3o/Case%201.%20%D0%A0%D0%B5%D0%BA%D0%BE%D0%BC%D0%B5%D0%BD%D0%B4%D0%B0%D1%82%D0%B5%D0%BB%D1%8C%D0%BD%D1%8B%D0%B5%20%D1%81%D0%B8%D1%81%D1%82%D0%B5%D0%BC%D1%8B.pdf?dl=0 Case study 1] || https://github.com/anamarina/hse_recsys_2020/blob/main/week1/home_assignment_1.ipynb || 20 ноября 2020 ||
+
| style="background:#eaecf0;" | '''2''' || Метод скользящего контроля для оценки качества рекомендаций || [https://www.dropbox.com/s/0fyhrktzj8lmu3o/Case%201.%20%D0%A0%D0%B5%D0%BA%D0%BE%D0%BC%D0%B5%D0%BD%D0%B4%D0%B0%D1%82%D0%B5%D0%BB%D1%8C%D0%BD%D1%8B%D0%B5%20%D1%81%D0%B8%D1%81%D1%82%D0%B5%D0%BC%D1%8B.pdf?dl=0 Case study 1] || [https://github.com/anamarina/hse_recsys_2020/blob/main/week1/home_assignment_1.ipynb Задание 1] || 20 ноября 2020 ||
 
|-
 
|-
 
| style="background:#eaecf0;" | '''3''' || Частые множества и ассоциативные правила || [https://www.dropbox.com/s/q3v478dtbz7huno/PatternMiningIntro_2020.pdf?dl=0 Слайды] ||  || ||
 
| style="background:#eaecf0;" | '''3''' || Частые множества и ассоциативные правила || [https://www.dropbox.com/s/q3v478dtbz7huno/PatternMiningIntro_2020.pdf?dl=0 Слайды] ||  || ||

Версия 21:08, 28 ноября 2020

О курсе

Целями освоения дисциплины «Рекомендательные системы и поиск закономерностей в данных» являются овладение студентами основными методами рекомендательных систем и подходами к поиску закономерностей в данных, например, таких как базы транзакций и последовательностей. В ходе курса будут рассмотрены:
- Основные типы рекомендательных систем и алгоритмические подходы к решению задачи рекомендаций;
- Методы майнинга данных и поиска закономерностей в различных типах данных, включая транзакции и последовательности событий и транзакций;
- Методы проверки качества рекомендаций и достоверности выявленных закономерностей.

Программа курса: ПУД

Репозиторий курса: github

Контакты

Преподаватель Контакты
Ананьева Марина Евгеньевна Email Telegram
Игнатов Дмитрий Игоревич Email

Программное обеспечение

  • Python >= 3.6
  • Jupyter Notebook
  • pip3

Материалы курса

Неделя Тема Слайды Дополнительные материалы Домашнее задание Дедлайн
1 Введение в рекомендательные системы Слайды
2 Метод скользящего контроля для оценки качества рекомендаций Case study 1 Задание 1 20 ноября 2020
3 Частые множества и ассоциативные правила Слайды
4 Методы на основе матричных разложений Слайды
5 Функции потерь. Метрики качества. Двухуровневая архитектура рекомендаций
6 Объяснения рекомендаций (обзор литературы)
7

Оценки

Список литературы

1. Charu C. Aggarwal. Recommender Systems: The Textbook, Springer, April 2016 – Режим доступа: https://www.springer.com/gp/book/9783319296579

2. Recommender Systems Handbook. Francesco Ricci, Lior Rokach, Bracha Shapira (Eds.), Springer, 2015 – Режим доступа: https://www.springer.com/la/book/9781489976369