Машинное обучение 1/2023 2024 — различия между версиями
Esokolov (обсуждение | вклад) (→Лекции) |
(→Практические задания: Добавлено задание 4) |
||
Строка 147: | Строка 147: | ||
Жесткий дедлайн: 17.10.2019 23:59. | Жесткий дедлайн: 17.10.2019 23:59. | ||
− | [[https:// | + | '''Задание 4.''' Метод опорных векторов, категориальные признаки, калибровка предсказаний и отбор признаков. |
+ | |||
+ | Мягкий дедлайн: 11.11.2019 07:59. | ||
+ | |||
+ | Жесткий дедлайн: 13.11.2019 23:59. | ||
+ | |||
+ | [[https://nbviewer.jupyter.org/github/esokolov/ml-course-hse/blob/master/2019-fall/homeworks-practice/homework-practice-04.ipynb Ноутбук с заданием]] | ||
==Теоретические домашние задания== | ==Теоретические домашние задания== |
Версия 12:17, 28 октября 2019
Содержание
О курсе
Курс читается для студентов 3-го курса ПМИ ФКН ВШЭ в 1-2 модулях.
Проводится с 2016 года.
Лектор: Соколов Евгений Андреевич
Лекции проходят по пятницам, 12:10 - 13:30, ауд. R404 (Покровский бульвар, 11).
Полезные ссылки
Репозиторий с материалами на GitHub
Почта для сдачи домашних заданий (на самом деле задания сдаются в AnyTask, но если он не работает, то присылайте на почту): hse.cs.ml+<номер группы>@gmail.com (например, hse.cs.ml+171@gmail.com)
Канал в telegram для объявлений: https://t.me/joinchat/AAAAAEtiwm9A8i-78LNcKQ
Чат в telegram для обсуждений (предназначение чата до конца не ясно, вопросы может быть правильнее задавать в чатах групп): https://t.me/joinchat/A5rlQBUrWTeXl7eBbnyBcQ
Ссылка на курс в Anytask: https://anytask.org/course/537
Оставить отзыв на курс: форма
Вопросы по курсу можно задавать на почту курса, а также в телеграм лектору (esokolov@) или семинаристу. Вопросы по материалам лекций/семинаров и по заданиям лучше всего оформлять в виде Issue в github-репозитории курса.
Семинары
Группа | Преподаватель | Учебный ассистент |
---|---|---|
171 (МОП) | Зиннурова Эльвира Альбертовна | Виктор Куканов |
172 (МОП) | Каюмов Эмиль Марселевич | Соня Дымченко |
173 (ТИ) | Хрушков Павел Вадимович | Роман Соколов |
174 (АДИС) | Кохтев Вадим Михайлович | Евгений Алаев |
175 (РС) | Волохова Александра Константиновна | Ярослав Пудяков |
176 (РС) | Яшков Даниил Дмитриевич | Николай Пальчиков |
Магистратура ФТиАД | Рысьмятова Анастасия Александровна | Олег Дешеулин |
Консультации
Правила выставления оценок
В курсе предусмотрено несколько форм контроля знания:
- Самостоятельные работы на семинарах, проверяющие знание основных фактов с лекций
- Практические домашние работы на Python
- Письменная контрольная работа
- Письменный экзамен
Итоговая оценка вычисляется на основе оценки за работу в семестре и оценки за экзамен:
Итог = Округление(0.15 * ПР + 0.4 * ДЗ + 0.15 * КР + 0.3 * Э)
ПР — средняя оценка за самостоятельные работы на семинарах
ДЗ — средняя оценка за практические домашние работы на Python
КР — оценка за контрольную работу
Э — оценка за экзамен
Округление арифметическое.
Правила сдачи заданий
За каждый день просрочки после мягкого дедлайна снимается 1 балл. После жёсткого дедлайна работы не принимаются. Даже при опоздании на одну секунду. Сдавайте заранее.
При обнаружении плагиата оценки за домашнее задание обнуляются всем задействованным в списывании студентам, а также подаётся докладная записка в деканат. Следует помнить, что при повторном списывании деканат имеет право отчислить студента.
При наличии уважительной причины пропущенную проверочную можно написать позднее, а дедлайн по домашнему заданию может быть перенесён. Дедлайн по домашнему заданию переносится на количество дней, равное продолжительности уважительной причины. Решение о том, является ли причина уважительной, принимает исключительно учебный офис.
Лекции
Ко всем конспектам на GitHub есть исходники. Исправления и дополнения всячески приветствуются!
Лекция 1 (6 сентября). Введение в машинное обучение. Основные термины, постановки задач и примеры применения. [Конспект]
Лекция 2 (13 сентября). Линейная регрессия. Метрики качества регрессии. Градиентный спуск и способы оценивания градиента. Продвинутые градиентные методы. [Конспект]
Лекция 3 (20 сентября). Переобучение и регуляризация. Разреженные линейные модели. Квантильная регрессия. Подготовка признаков. [Конспект]
Лекция 4 (27 сентября). Линейная классификация. Отступ и верхние оценки на пороговую функцию потерь. Метрики качества классификации. [Конспект]
Лекция 5 (4 октября). Линейная классификация. Логистическая регрессия и оценки вероятности классов. Метод опорных векторов. [Конспект]
Лекция 6 (11 октября). Многоклассовая классификация, сведение к бинарным задачам. Многоклассовая логистическая регрессия. Классификация с пересекающимися классами. Метрики качества многоклассовой классификации.
Лекция 7 (18 октября). Решающие деревья. Жадный алгоритм построения. Выбор лучшего разбиения с помощью критерия информативности. Критерии информативности для регрессии и классификации. Учёт пропусков в деревьях. Решающие деревья и категориальные признаки. [Конспект]
Семинары
Семинар 1. Области применения машинного обучения. Инструменты data scientist'а. Pandas и разведочный анализ данных. [Ноутбук]
Семинар 2. Линейная регрессия. Библиотека scikit-learn. Валидация моделей. Работа с категориальными признаками. [Ноутбук]
Семинар 3. Градиент и его свойства. Векторное дифференцирование. Градиентый спуск, его модификации, практические аспекты. [Конспект] [Ноутбук]
Семинар 4. Предобработка данных. [Конспект] [Ноутбук]
Практические задания
За каждый день просрочки после мягкого дедлайна снимается 1 балл. После жёсткого дедлайна работы не принимаются. В течение семестра каждый студент может не более 2 раз сдать задание после жёсткого дедлайна.
Задание 1. Работа с Pandas и Matplotlib.
Мягкий дедлайн: 15.09.2019 23:59.
Жесткий дедлайн: 17.09.2019 23:59.
Задание 2. Exploratory Data Analysis и линейная регрессия.
Мягкий дедлайн: 01.10.2019 23:59.
Жесткий дедлайн: 04.10.2019 23:59 (за каждый день просрочки снимается 2 балла).
Задание 3. Градиентный спуск своими руками.
Мягкий дедлайн: 15.10.2019 07:59.
Жесткий дедлайн: 17.10.2019 23:59.
Задание 4. Метод опорных векторов, категориальные признаки, калибровка предсказаний и отбор признаков.
Мягкий дедлайн: 11.11.2019 07:59.
Жесткий дедлайн: 13.11.2019 23:59.
Теоретические домашние задания
Теоретические ДЗ не проверяются, но задачи из них могут войти в проверочные работы на семинарах.
Теоретическое домашнее задание 1: линейная регрессия и векторное дифференцирование [ссылка]
Бонусы за соревнования
За успешное участие в соревнованиях по анализу данных могут быть выставлены бонусные баллы, которые можно прибавить к оценке за любое практическое или теоретическое домашнее задание, а также за самостоятельную работу. Под успешным участием понимается попадание в топ-10% мест; если соревнование особо сложное и крупное, может рассматриваться и попадание в топ-20% мест. Конкретное число баллов определяется преподавателями и зависит от сложности соревнования и занятого места. За одно соревнование можно получить не более 5 баллов. Для получения оценки необходимо предоставить краткий отчёт о решении задачи.
Контрольная работа
Экзамен
Полезные материалы
Книги
- Hastie T., Tibshirani R, Friedman J. The Elements of Statistical Learning (2nd edition). Springer, 2009.
- Bishop C. M. Pattern Recognition and Machine Learning. Springer, 2006.
- Mohri M., Rostamizadeh A., Talwalkar A. Foundations of Machine Learning. MIT Press, 2012.
- Murphy K. Machine Learning: A Probabilistic Perspective. MIT Press, 2012.
- Mohammed J. Zaki, Wagner Meira Jr. Data Mining and Analysis. Fundamental Concepts and Algorithms. Cambridge University Press, 2014.
- Willi Richert, Luis Pedro Coelho. Building Machine Learning Systems with Python. Packt Publishing, 2013.
Курсы по машинному обучению и анализу данных
- Курс по машинному обучению К.В. Воронцова
- Видеозаписи лекций курса Школы Анализа Данных, К.В. Воронцов
- Coursera: Машинное обучение и анализ данных (специализация)
- Coursera: Введение в машинное обучение, К.В. Воронцов