Statistical learning theory 2018 2019 — различия между версиями

Материал из Wiki - Факультет компьютерных наук
Перейти к: навигация, поиск
Строка 21: Строка 21:
 
! Date !! Summary !! Lecture notes !! Problem list !! Solutions
 
! Date !! Summary !! Lecture notes !! Problem list !! Solutions
 
|-
 
|-
| 3 sept || PAC-learning in the realizable setting definitions  || [https://www.dropbox.com/s/l8e8xjfe2f8tjz8/01lect.pdf?dl=0 lecture1.pdf] updated 23/09
+
| 3 Sept || PAC-learning in the realizable setting definitions  || [https://www.dropbox.com/s/l8e8xjfe2f8tjz8/01lect.pdf?dl=0 lecture1.pdf] updated 23/09
 
|| [https://www.dropbox.com/s/4ic3ce71znglmu9/01sem.pdf?dl=0 Problem list 1] ||  
 
|| [https://www.dropbox.com/s/4ic3ce71znglmu9/01sem.pdf?dl=0 Problem list 1] ||  
 
|-
 
|-
| 10 sept || VC-dimension and growth functions || [https://www.dropbox.com/s/q1jc2dlotwdn9e2/02lect.pdf?dl=0 lecture2.pdf] updated 23/09 || [https://www.dropbox.com/s/4gimo3fij5p7lnc/02sem.pdf?dl=0 Problem list 2] ||
+
| 10 Sept || VC-dimension and growth functions || [https://www.dropbox.com/s/q1jc2dlotwdn9e2/02lect.pdf?dl=0 lecture2.pdf] updated 23/09 || [https://www.dropbox.com/s/4gimo3fij5p7lnc/02sem.pdf?dl=0 Problem list 2] ||
 
|-
 
|-
| 17 sept || Proof that finite VC-dimension implies PAC-learnability || [https://www.dropbox.com/s/9rfvwvf0ne95j8e/03lect.pdf?dl=0 lecture3.pdf] updated 23/09 || [https://www.dropbox.com/s/jb9mriumhtdpn8m/03sem.pdf?dl=0 Problem list 3] ||
+
| 17 Sept || Proof that finite VC-dimension implies PAC-learnability || [https://www.dropbox.com/s/9rfvwvf0ne95j8e/03lect.pdf?dl=0 lecture3.pdf] updated 23/09 || [https://www.dropbox.com/s/jb9mriumhtdpn8m/03sem.pdf?dl=0 Problem list 3] ||
 
|-
 
|-
| 24 sept || Applications to decision trees and threshold neural networks. Agnostic PAC-learnability. || [https://www.dropbox.com/s/9oa2zg7jz2ovquf/04lect.pdf?dl=0 lecture4.pdf] || [https://www.dropbox.com/s/l2d9f7u77smrx4u/04sem.pdf?dl=0  Problem list 4] ||
+
| 24 Sept || Applications to decision trees and threshold neural networks. Agnostic PAC-learnability. || [https://www.dropbox.com/s/9oa2zg7jz2ovquf/04lect.pdf?dl=0 lecture4.pdf] || [https://www.dropbox.com/s/l2d9f7u77smrx4u/04sem.pdf?dl=0  Problem list 4] ||
 
|-
 
|-
| 1 oct || Agnostic PAC-learnability is equivalent with finite VC-dimension, structural risk minimization || [https://www.dropbox.com/s/jsrse5qaqk2jhi1/05lect.pdf?dl=0 lecture5.pdf] 12/10 || [https://www.dropbox.com/s/etw67uq1pu5g58t/05sem.pdf?dl=0 Problem list 5] ||
+
| 1 Oct || Agnostic PAC-learnability is equivalent with finite VC-dimension, structural risk minimization || [https://www.dropbox.com/s/jsrse5qaqk2jhi1/05lect.pdf?dl=0 lecture5.pdf] 12/10 || [https://www.dropbox.com/s/etw67uq1pu5g58t/05sem.pdf?dl=0 Problem list 5] ||
 +
|-
 +
| 9 Oct || Boosting, Mohri's book pages 121-131. || || [https://www.dropbox.com/s/85t74k9wmibcnmr/06sem.pdf?dl=0 Problem list 6] ||
 +
|-
 +
| 15 Oct || Rademacher complexity and contraction lemma (=Talagrand's lemma), Mohri's book pages 33-41 and 78-79 |
 
|}
 
|}
  

Версия 14:51, 14 октября 2018

General Information

The syllabus


Deadline homework 1: October 2nd. Questions: see seminars 3 and 4.

Deadline homework 2: October 27nd.

Deadline homework 3: TBA.

Marks

Intermediate exams: Oktober 29th.

Course materials

Date Summary Lecture notes Problem list Solutions
3 Sept PAC-learning in the realizable setting definitions lecture1.pdf updated 23/09 Problem list 1
10 Sept VC-dimension and growth functions lecture2.pdf updated 23/09 Problem list 2
17 Sept Proof that finite VC-dimension implies PAC-learnability lecture3.pdf updated 23/09 Problem list 3
24 Sept Applications to decision trees and threshold neural networks. Agnostic PAC-learnability. lecture4.pdf Problem list 4
1 Oct Agnostic PAC-learnability is equivalent with finite VC-dimension, structural risk minimization lecture5.pdf 12/10 Problem list 5
9 Oct Boosting, Mohri's book pages 121-131. Problem list 6
15 Oct

A gentle introduction to the materials of the first 3 lectures and an overview of probability theory, can be found in chapters 1-6 and 11-12 of the following book: Sanjeev Kulkarni and Gilbert Harman: An Elementary Introduction to Statistical Learning Theory, 2012.

Afterward, we hope to cover chapters 1-8 from the book: Foundations of machine learning, Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalker, 2012. These books can be downloaded from http://gen.lib.rus.ec/ .


Office hours

Person Monday Tuesday Wednesday Thursday Friday
Bruno Bauwens 16:45–19:00 15:05–18:00 Room 620


Russian texts

The following links might help students who have trouble with English. A lecture on VC-dimensions was given by K. Vorontsov. A course on Statistical Learning Theory by Nikita Zhivotovsky is given at MIPT. Some short description about PAC learning on p136 in the book ``Наука и искусство построения алгоритмов, которые извлекают знания из данных, Петер Флах. On machinelearning.ru you can find brief and clear definitions.