Statistical learning theory 2018 2019 — различия между версиями

Материал из Wiki - Факультет компьютерных наук
Перейти к: навигация, поиск
Строка 30: Строка 30:
 
| 24 sept || Applications to decision trees and threshold neural networks. Agnostic PAC-learnability. || [https://www.dropbox.com/s/9oa2zg7jz2ovquf/04lect.pdf?dl=0 lecture4.pdf] || [https://www.dropbox.com/s/l2d9f7u77smrx4u/04sem.pdf?dl=0  Problem list 4] ||
 
| 24 sept || Applications to decision trees and threshold neural networks. Agnostic PAC-learnability. || [https://www.dropbox.com/s/9oa2zg7jz2ovquf/04lect.pdf?dl=0 lecture4.pdf] || [https://www.dropbox.com/s/l2d9f7u77smrx4u/04sem.pdf?dl=0  Problem list 4] ||
 
|-
 
|-
| 1 oct || Agnostic PAC-learnability is equivalent with finite VC-dimension, structural risk minimization || [https://www.dropbox.com/s/jsrse5qaqk2jhi1/05lect.pdf?dl=0 lecture5.pdf] (part) || ||
+
| 1 oct || Agnostic PAC-learnability is equivalent with finite VC-dimension, structural risk minimization || [https://www.dropbox.com/s/jsrse5qaqk2jhi1/05lect.pdf?dl=0 lecture5.pdf] 12/10 || [https://www.dropbox.com/s/etw67uq1pu5g58t/05sem.pdf?dl=0 Problem list 5] ||
 
|}
 
|}
  

Версия 21:04, 13 октября 2018

General Information

The syllabus


Deadline homework 1: October 2nd. Questions: see seminars 3 and 4.

Deadline homework 2: October 27nd.

Deadline homework 3: TBA.

Marks

Intermediate exams: Oktober 29th.

Course materials

Date Summary Lecture notes Problem list Solutions
3 sept PAC-learning in the realizable setting definitions lecture1.pdf updated 23/09 Problem list 1
10 sept VC-dimension and growth functions lecture2.pdf updated 23/09 Problem list 2
17 sept Proof that finite VC-dimension implies PAC-learnability lecture3.pdf updated 23/09 Problem list 3
24 sept Applications to decision trees and threshold neural networks. Agnostic PAC-learnability. lecture4.pdf Problem list 4
1 oct Agnostic PAC-learnability is equivalent with finite VC-dimension, structural risk minimization lecture5.pdf 12/10 Problem list 5

A gentle introduction to the materials of the first 3 lectures and an overview of probability theory, can be found in chapters 1-6 and 11-12 of the following book: Sanjeev Kulkarni and Gilbert Harman: An Elementary Introduction to Statistical Learning Theory, 2012.

Afterward, we hope to cover chapters 1-8 from the book: Foundations of machine learning, Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalker, 2012. These books can be downloaded from http://gen.lib.rus.ec/ .


Office hours

Person Monday Tuesday Wednesday Thursday Friday
Bruno Bauwens 16:45–19:00 15:05–18:00 Room 620


Russian texts

The following links might help students who have trouble with English. A lecture on VC-dimensions was given by K. Vorontsov. A course on Statistical Learning Theory by Nikita Zhivotovsky is given at MIPT. Some short description about PAC learning on p136 in the book ``Наука и искусство построения алгоритмов, которые извлекают знания из данных, Петер Флах. On machinelearning.ru you can find brief and clear definitions.