Машинное обучение (факультет экономических наук) — различия между версиями

Материал из Wiki - Факультет компьютерных наук
Перейти к: навигация, поиск
(Правила сдачи заданий)
(Правила сдачи заданий)
Строка 69: Строка 69:
 
При обнаружении плагиата оценки за домашнее задание обнуляются всем задействованным в списывании студентам, а также подаётся докладная записка в деканат. Следует помнить, что при повторном списывании деканат имеет право отчислить студента.
 
При обнаружении плагиата оценки за домашнее задание обнуляются всем задействованным в списывании студентам, а также подаётся докладная записка в деканат. Следует помнить, что при повторном списывании деканат имеет право отчислить студента.
  
При наличии уважительной причины пропущенную проверочную можно написать позднее, а дедлайн по домашнему заданию может быть перенесён (при этом получить дополнительные баллы за призовые места на конкурсе можно только при участии в общий срок). Дедлайн по домашнему заданию переносится на количество дней, равное продолжительности уважительной причины. Решение о том, является ли причина уважительной, принимает исключительно учебный офис.
+
При наличии уважительной причины пропущенную проверочную можно написать позднее, а дедлайн по домашнему заданию может быть перенесён (при этом получить дополнительные баллы за призовые места на конкурсе можно только при участии в общий срок).
  
 
== Лекции ==
 
== Лекции ==

Версия 16:21, 2 сентября 2017

О курсе

Лекторы: Екатерина Лобачева, Алексей Артемов
Лекции проходят по пятницам, 10:30 - 11:50, ауд. 5215.

Полезные ссылки

[ Программа курса]
Репозиторий на GitHub с материалами курса
Репозиторий на GitHub с конспектами лекций Евгения Соколова

Почта курса: ml.econom.hse@gmail.com
Формат темы письма (обязательно соблюдайте его!):

  • Вопрос - номер группы по данному курсу - Фамилия Имя — для вопросов;
  • Практика {номер задания} - номер группы по данному курсу - Фамилия Имя — для сдачи практических домашних заданий.

Канал в telegram для объявлений: https://t.me/joinchat/AAAAAERI0duQMnhSawsR2A
Чат в telegram для обсуждений: https://t.me/joinchat/ABAXWEIJR7rcclSWVZfFhg

[ Таблица с оценками]

Оставить отзыв на курс: [ форма]

Вопросы по курсу можно задавать на почту курса, а также .

Семинары

Группа Преподаватель Учебный ассистент Страница Расписание
4 курс эконома, простая группа Артем Филатов Анастасия Рогачевская пятница 12:10, ауд. 5215
4 курс эконома, сложная группа Борис Демешев пятница 12:10, ауд. 2205
3 курс эконома, простая группа Георгий Звонка суббота 16:40, ауд. 2205
3 курс эконома, сложная группа Евгений Егоров понедельник 9:00, ауд. 3316
совбак, простая группа Илья Щуров вторник, 18:10, ауд. 3317
совбак, сложная группа Артем Филатов Ксения Вальчук среда 13:40, ауд. 4428

Правила выставления оценок

В курсе предусмотрено несколько форм контроля знания:

  • Самостоятельные работы на семинарах, проверяющие знание основных фактов с лекций и выполнение теоретических домашних заданий
  • Практические домашние работы на Python
  • Соревнование по анализу данных
  • Устный коллоквиум в конце 1-го модуля
  • Устный экзамен

Итоговая оценка вычисляется на основе оценки за работу в семестре и оценки за экзамен:

Oитоговая = 0.7 * Oнакопленная + 0.3 * Оэкз

Оценка за работу в семестре вычисляется по формуле

Oнакопленная = 0.2 * Oсамостоятельные + 0.6 * Одз + 0.2 * Околлоквиум

Оценка за самостоятельную работу вычисляется как среднее по всем самостоятельным, оценка за домашнюю работу — как среднее по всем практическим заданиям и соревнованию.

Правила сдачи заданий

Дедлайны по всем домашним заданиям являются жёсткими, то есть после срока работы не принимаются.

При обнаружении плагиата оценки за домашнее задание обнуляются всем задействованным в списывании студентам, а также подаётся докладная записка в деканат. Следует помнить, что при повторном списывании деканат имеет право отчислить студента.

При наличии уважительной причины пропущенную проверочную можно написать позднее, а дедлайн по домашнему заданию может быть перенесён (при этом получить дополнительные баллы за призовые места на конкурсе можно только при участии в общий срок).

Лекции

Семинары

  • Семинар 1: Python, numpy, pandas, matplotlib и прочие страшные звери.

Практические задания

Полезные материалы