Майнор Интеллектуальный анализ данных/Введение в анализ данных/ИАД-18 — различия между версиями
Материал из Wiki - Факультет компьютерных наук
Igtm (обсуждение | вклад) (→Расписание семинаров) |
Igtm (обсуждение | вклад) м |
||
Строка 30: | Строка 30: | ||
|- | |- | ||
|26 января 2016 || align="center"|3 || Python для анализа данных. Pandas. Matplotlib. || | |26 января 2016 || align="center"|3 || Python для анализа данных. Pandas. Matplotlib. || | ||
− | [http://nbviewer.jupyter.org/urls/dl.dropbox.com/s/ | + | [http://nbviewer.jupyter.org/urls/dl.dropbox.com/s/l5ug7dlxj416e4a/sem_3.ipynb ipython notebook с семинара] |
|- | |- | ||
|02 февраля 2016 || align="center"|4 || Решение задач. || | |02 февраля 2016 || align="center"|4 || Решение задач. || |
Версия 14:39, 20 марта 2016
Общая информация
|
Выставление оценки
- На семинарах по некоторым темам будут проводиться проверочные работы.
- Также за курс будут выданы несколько практических заданий, которые будут оцениваться по десятибалльной шкале. На выполнение каждого практического задание будет даваться 2 недели. Штраф за просрочку сдачи составляет 0.2 балла в день.
- Оценка за работу в семестре будет ставиться исходя из набранных баллов.
- В конце семестра разрешается переписать одну пропущенную по любой причине проверочную работу. Также разрешается переписать все проверочные, пропущенные по уважительной причине.
- Результаты работ ИАД - 18
Расписание семинаров
Дата | № занятия | Занятие | Материалы |
---|---|---|---|
12 января 2016 | 1 | Вводный семинар. Обсуждение основных понятий анализа данных. | |
19 января 2016 | 2 | Python для анализа данных. NumPy. | ipython notebook с семинара |
26 января 2016 | 3 | Python для анализа данных. Pandas. Matplotlib. | |
02 февраля 2016 | 4 | Решение задач. | |
09 февраля 2016 | 5 | Градиентный спуск. Линейная регрессия. | |
16 февраля 2016 | 6 | Градиентный спуск. | |
01 марта 2016 | 7 | Градиентный спуск. Понятия Ridge и Lasso регрессии. | |
15 марта 2016 | 8 | Теория вероятностей. Решение задач на формулу полной вероятности и формулу Байеса. | |
15 марта 2016 | 8 | Консультация. Ridge и Lasso регрессии. |
Практические задания
Практическое задание №1 "Изучение Numpy, Pandas, Matplotlib"