Алгебра 2014/2015 — различия между версиями
Ravdeev (обсуждение | вклад) |
Ravdeev (обсуждение | вклад) (→Экзамен) |
||
Строка 82: | Строка 82: | ||
=== Экзамен === | === Экзамен === | ||
− | Экзамен будет устный. | + | Экзамен будет устный. Каждый билет будет включать в себя по два вопроса из программы курса. |
+ | |||
+ | [https://www.dropbox.com/s/nltmhak04uiv2yy/Program_Algebra.pdf?dl=0 '''Программа курса'''] | ||
==== Расписание экзаменов ==== | ==== Расписание экзаменов ==== | ||
Строка 93: | Строка 95: | ||
|- | |- | ||
|| Время || 10:30 || 12:10 || 13:40 || 15:10 || 10:30 || 12:10 || 13:40 || 15:10 | || Время || 10:30 || 12:10 || 13:40 || 15:10 || 10:30 || 12:10 || 13:40 || 15:10 | ||
+ | |- | ||
+ | || Аудитория ||colspan="8"| 622 | ||
|} | |} | ||
− | |||
− | |||
=== Порядок формирования оценок === | === Порядок формирования оценок === |
Версия 10:16, 9 июня 2015
Цель этого небольшого курса — познакомить слушателей с основными структурами современной алгебры. Первые пять лекций посвящены теории групп, последние пять — кольцам и полям. Мы докажем базовые факты об этих структурах и продемонстрируем их возможные приложения. Сдавшие этот курс смогут, среди прочего, перечислить с точностью до изоморфизма все коммутативные группы из 100 элементов, найти сумму кубов корней данного многочлена, доказать, что многочлен от многих переменных однозначно раскладывается на простые множители, и объяснить, почему не существует поля из 6 элементов.
Содержание
Преподаватели и учебные ассистенты
Группа | 101 | 102 | 103 | 104 | 105 | 106 | 107 | 108 |
---|---|---|---|---|---|---|---|---|
Лектор | Иван Владимирович Аржанцев | Роман Сергеевич Авдеев | ||||||
Семинарист | Роман Сергеевич Авдеев | Иван Владимирович Аржанцев | Полина Юрьевна Котенкова | Роман Сергеевич Авдеев | Андрей Александрович Кустарёв | |||
Ассистент | Виктор Табаков | Андрей Васильев | Ярослав Хроменков | Роман Кизилов | Максим Каледин | Екатерина Соколова | Фёдор Коган | Дмитрий Петров |
Расписание консультаций
Преподаватель/ассистент | понедельник | вторник | среда | четверг | пятница | |
---|---|---|---|---|---|---|
|
Иван Владимирович Аржанцев | 17:00–18:30, каб. 603 | ||||
|
Роман Сергеевич Авдеев | 18:10–18:50, ауд. 313 | 13:40–14:20, ауд. 313 | |||
|
Полина Юрьевна Котенкова | 18:10–19:30, ауд. 313 | ||||
|
Андрей Александрович Кустарёв | 16:40–17:40, ауд. 313 | ||||
|
Виктор Табаков | 15:10–16:30, ауд. 312 | ||||
|
Андрей Васильев | 18:10–19:30, ауд. 511 | ||||
|
Ярослав Хроменков | 12:10–13:30, ауд. 313 | ||||
|
Роман Кизилов | 13:40–15:00, ауд. 314 | ||||
|
Максим Каледин | 13:40–15:00, ауд. 511 | ||||
10 | Екатерина Соколова | 15:10–16:30, ауд. 314 | ||||
11 | Фёдор Коган | 16:40–18:00, ауд. 314 | ||||
12 | Дмитрий Петров | 15:10–16:30, ауд. 511 |
Формы контроля знаний студентов
Домашняя работа
Домашние задания условно разделены на две части, каждая из которых содержит по 20 задач. Первая часть (по теории групп) состоит из 5 блоков по 4 задачи в каждом, вторая часть (по кольцам и полям) состоит из 4 блоков по 5 задач в каждом. Домашние задания будут выдаваться на каждом семинаре, по одному блоку задач за раз.
Важно: при обнаружении двух и более одинаковых решений в работах разных студентов результаты будут аннулироваться независимо от того, кто у кого списал.
Результаты выполнения первой части домашних заданий будут отражены в оценке Oдз1, вычисляемой по формуле
Oдз1 = 0,5 * (число решённых задач из первой части).
Аналогично, работа над второй частью домашних заданий выльется в оценку Oдз2:
Oдз2 = 0,5 * (число решённых задач из второй части).
Контрольная работа
Письменная контрольная работа будет проведена одновременно для всех групп 13 июня с 13:40 до 15:00. Работа будет состоять из шести задач стоимостью по 2 балла каждая, так что оценка за контрольную может быть больше 10 баллов.
Показ работ контрольной пройдёт 15 июня с 15:10 до 16:30 в ауд. 622.
Важно: на контрольной можно будет пользоваться любыми материалами на бумажных носителях. Использование электронных устройств (кроме тех, у которых единственная функция — калькулятор) будет запрещено.
Типы задач на контрольной работе
- Порядки элементов и подгруппы в конечных абелевых группах [60.39, 60.40, 60.42, 60.43, 60.45]
- Факторгруппы свободных абелевых групп [60.52, 60.53, 60.54]
- Орбиты и стабилизаторы для действий групп на множествах [57.1, 57.2, 57.3, 57.9]
- Симметрические многочлены и теорема Виета [31.2, 31.3. 31.4, 31.9, 31.10, 31.25, 31.26]
- Алгоритм Евклида и линейное представление НОД в кольце многочленов [25.2, 25.3, 25.5, 25.7]
- Минимальные многочлены и вычисления в конечных расширениях полей [67.3, 67.13]
Для каждого типа в скобках указаны номера задач из Сборника задач по алгебре под редакцией А.И. Кострикина (М.: МЦНМО, 2009), которые рекомендуется решать для тренировки.
Экзамен
Экзамен будет устный. Каждый билет будет включать в себя по два вопроса из программы курса.
Расписание экзаменов
Группа | 101 | 102 | 103 | 104 | 105 | 106 | 107 | 108 |
---|---|---|---|---|---|---|---|---|
Дата | 19 июня | 20 июня | ||||||
Время | 10:30 | 12:10 | 13:40 | 15:10 | 10:30 | 12:10 | 13:40 | 15:10 |
Аудитория | 622 |
Порядок формирования оценок
Накопленная оценка будет вычисляться по следующей формуле:
Oнакопленная = 0,3 * Oдз1 + 0,3 * Oдз2 + 0,4 * Oк/р,
где Oдз1 — оценка за первое домашнее задание, Oдз2 — оценка за второе домашнее задание, Oк/р — оценка за контрольную работу.
Итоговая оценка будет выражаться через накопленную и оценку за экзамен следующим образом:
Oитоговая = 0,5 * Oнакопленная + 0,5 * Оэкз.
Округление будет производиться только для итоговой оценки. Способ округления — арифметический.
Конспекты лекций
В этом разделе выкладываются подготовленные И.В. Аржанцевым (и местами дополненные Р.С. Авдеевым) конспекты всех лекций курса. Содержание этих конспектов может незначительно отличаться от материала, фактически прочитанного на лекциях.
Лекция 1 (2.04.2015). Полугруппы и группы: основные определения и примеры. Группы подстановок и группы матриц. Подгруппы. Порядок элемента и циклические подгруппы. Смежные классы и индекс подгруппы. Теорема Лагранжа и её следствия
Лекция 2 (9.04.2015). Нормальные подгруппы. Факторгруппы и теорема о гомоморфизме. Центр группы. Прямое произведение групп. Факторизация по сомножителям. Разложение конечной циклической группы
Лекция 3 (16.04.2015). Конечно порождённые и свободные абелевы группы. Подгруппы свободных абелевых групп. Теорема о согласованных базисах. Алгоритм приведения целочисленной матрицы к диагональному виду
Лекция 4 (23.04.2015). Строение конечно порождённых абелевых групп. Конечные абелевы группы. Экспонента конечной абелевой группы
Лекция 5 (30.04.2015). Действие группы на множестве. Орбиты и стабилизаторы. Транзитивные и свободные действия. Три действия группы на себе. Классы сопряжённости. Теорема Кэли
Лекция 6 (14.05.2015). Кольца. Делители нуля, обратимые элементы, нильпотенты и идемпотенты. Поля и алгебры. Идеалы и факторкольца. Теорема о гомоморфизме. Центр алгебры матриц над полем. Простота алгебры матриц над полем
Лекция 7 (21.05.2015). Евклидовы кольца, кольца главных идеалов и факториальные кольца. Факториальность кольца многочленов от многих переменных
Лекция 8 (28.05.2015). Элементарные симметрические многочлены. Основная теорема о симметрических многочленах. Лексикографический порядок. Теорема Виета. Дискриминант многочлена
Лекция 9 (4.06.2015). Примеры полей. Характеристика поля. Расширения полей, алгебраические и трансцендентные элементы. Минимальный многочлен. Конечное расширение и его степень. Присоединение корня многочлена. Поле разложения многочлена: существование и единственность
Лекция 10 (11.06.2015)
Листки с задачами
Разборы домашних заданий от Максима Каледина
Материалы размещены здесь.
Ведомости текущего контроля
Литература
- Э.Б. Винберг. Курс алгебры. М.: Факториал Пресс, 2002.
- А.И. Кострикин. Введение в алгебру. Основы алгебры. М.: Наука. Физматлит, 1994.
- А.И. Кострикин. Введение в алгебру. Основные структуры алгебры. М.: Наука. Физматлит, 2000.
- Сборник задач по алгебре под редакцией А.Н. Кострикина. Новое издание. М.: МЦНМО, 2009.