Анализ данных (Программная инженерия) — различия между версиями

Материал из Wiki - Факультет компьютерных наук
Перейти к: навигация, поиск
Строка 3: Строка 3:
  
 
== Отчётность по курсу и критерии оценки ==
 
== Отчётность по курсу и критерии оценки ==
После каждой лекции студентам предлагается выполнить практическое задание на Python. В конце модуля пройдет письменный экзамен по теории.
+
* Оценка за курс. После каждой лекции студентам предлагается выполнить практическое задание на Python. В конце модуля пройдет письменный экзамен по теории.
 
Итоговая оценка за курс складывается из оценок за практические задания и оценки за экзамен.
 
Итоговая оценка за курс складывается из оценок за практические задания и оценки за экзамен.
 +
* Дедлайны. Решения присланные после дедлайнов не принимаются, кроме случаев наличия уважительных причин у студента (завалы на учебе или работе уважительными причинами не считаются).
  
 
== Темы лекций ==
 
== Темы лекций ==
Строка 16: Строка 17:
 
== Семинары ==
 
== Семинары ==
  
 
+
== Оформление писем ==
 +
Вопросы и домашние задания присылайте на почтовый адрес '''cshse.ml@gmail.com'''.
 +
На почту присылайте письма со следующими темами:
 +
* Для ''вопросов'' (общих, по лабораторным, по теории и т. д.): "Вопрос - Фамилия Имя Отчество - Группа"
 +
* Для ''лабораторных'': "Лабораторная {Номер лабораторной работы} - Фамилия Имя Отчество - Группа (Семинарист)"
 +
Когда отвечаете на наши письма или досылаете какие-то решения, пишите письма в '''тот же''' тред.
 
== Полезные ссылки ==
 
== Полезные ссылки ==
 +
=== Установка и настройка Python ===
 +
=== Машинное обучение ===
 +
* [http://www.machinelearning.ru/wiki/index.php?title=Заглавная_страница machinelearning.ru]
 +
* Одна из классических и наиболее полных книг по машинному обучению. [http://web.stanford.edu/~hastie/local.ftp/Springer/ESLII_print10.pdf Elements of Statistical Learning (Trevor Hastie, Robert Tibshirani, Jerome Friedman)]
 +
=== Python ===
 +
* [http://python.org Официальный сайт]
 +
* Библиотеки: [http://www.numpy.org/ NumPy], [http://pandas.pydata.org/ Pandas], [http://scikit-learn.org/stable/ SciKit-Learn], [http://matplotlib.org/ Matplotlib].
 +
* Питон с нуля: [http://nbviewer.ipython.org/gist/rpmuller/5920182 A Crash Course in Python for Scientists]
 +
* Лекции [https://github.com/jrjohansson/scientific-python-lectures#online-read-only-versions Scientific Python]
 +
* Книга: [http://www.cin.ufpe.br/~embat/Python%20for%20Data%20Analysis.pdf Wes McKinney «Python for Data Analysis»]
 +
* [https://github.com/ipython/ipython/wiki/A-gallery-of-interesting-IPython-Notebooks Коллекция интересных IPython ноутбуков]

Версия 21:25, 16 января 2015

Краткое описание

В курсе рассматриваются основные задачи анализа данных и обучения по прецедентам: классификация, кластеризация, регрессия, понижение размерности. Изучаются методы их решения, как классические, так и новые, созданные за последние 10–15 лет. Упор делается на практические аспекты применения изучаемых алгоритмов. Большое внимание уделяется практическим лабораторным работам на языке Python.

Отчётность по курсу и критерии оценки

  • Оценка за курс. После каждой лекции студентам предлагается выполнить практическое задание на Python. В конце модуля пройдет письменный экзамен по теории.

Итоговая оценка за курс складывается из оценок за практические задания и оценки за экзамен.

  • Дедлайны. Решения присланные после дедлайнов не принимаются, кроме случаев наличия уважительных причин у студента (завалы на учебе или работе уважительными причинами не считаются).

Темы лекций

Лекция 1. Основные понятия и примеры прикладных задач. Существующие инструменты анализа данных.

Постановка задач обучения по прецедентам. Объекты и признаки. Типы шкал: бинарные, номинальные, порядковые, количественные. Типы задач: классификация, регрессия, прогнозирование, кластеризация. Основные понятия: модель алгоритмов, метод обучения, функция потерь и функционал качества, принцип минимизации эмпирического риска, обобщающая способность, скользящий контроль. Примеры прикладных задач. Популярные библиотеки и фреймворки для анализа данных на различных языках программирования.

Семинары

Оформление писем

Вопросы и домашние задания присылайте на почтовый адрес cshse.ml@gmail.com. На почту присылайте письма со следующими темами:

  • Для вопросов (общих, по лабораторным, по теории и т. д.): "Вопрос - Фамилия Имя Отчество - Группа"
  • Для лабораторных: "Лабораторная {Номер лабораторной работы} - Фамилия Имя Отчество - Группа (Семинарист)"

Когда отвечаете на наши письма или досылаете какие-то решения, пишите письма в тот же тред.

Полезные ссылки

Установка и настройка Python

Машинное обучение

Python