Statistical learning theory 2023/24 — различия между версиями
Bauwens (обсуждение | вклад) |
Bauwens (обсуждение | вклад) |
||
Строка 119: | Строка 119: | ||
|- | |- | ||
| [https://youtu.be/GL574ljefJ8 05 Dec] | | [https://youtu.be/GL574ljefJ8 05 Dec] | ||
− | || Implicit regularization of stochastic gradient descent in neural nets | + | || Implicit regularization of stochastic gradient descent in overparameterized neural nets |
|| | || | ||
|| [https://www.dropbox.com/s/b4xac5uki7l1ysq/16book_implicitRegularization.pdf?dl=0 ch16] | || [https://www.dropbox.com/s/b4xac5uki7l1ysq/16book_implicitRegularization.pdf?dl=0 ch16] | ||
Строка 129: | Строка 129: | ||
|- | |- | ||
| 09 Dec | | 09 Dec | ||
− | || Optional. Saturday 14h40, seminar 16h20. Double descent and neural nets at initialization. | + | || Optional. Saturday 14h40, seminar 16h20. Double descent and wide neural nets at initialization. |
|| | || | ||
|| | || | ||
Строка 139: | Строка 139: | ||
|- | |- | ||
| 16 Dec | | 16 Dec | ||
− | || Optional. Saturday 14h40, seminar 16h20. | + | || Optional. Saturday 14h40, seminar 16h20. Evolution of NTK during stochastic gradient descent. |
|| | || | ||
|| | || |
Версия 13:10, 20 сентября 2023
Содержание
General Information
Lectures: Tuesday 14h40 -- 16h00, room S321 and in zoom by Bruno Bauwens and Maxim Kaledin,
Seminars: Monday 16h20 -- 17h40, room N506, and in zoom by Artur Goldman.
To discuss the materials, join the telegram group The course is similar to last year.
Homeworks
Deadline every 2 weeks, before the seminar at 16h00. Homework problems from
seminars 1 and 2 on September 25, seminars 3 and 4 on October 9, seminars 5 and 6 on October 23, seminars 7 and 8 on November 13, seminars 9 and 10 on November 27, seminars 11 and 12 before the start of the exam.
Email to brbauwens-at-gmail.com. Start the subject line with SLT-HW. -Link with results todo-.
Course materials
Video | Summary | Slides | Lecture notes | Problem list | Solutions |
---|---|---|---|---|---|
Part 1. Online learning | |||||
05 Sept | Philosophy. The online mistake bound model. The halving and weighted majority algorithms movies | sl01 | ch00 ch01 | prob01 | sol01 |
12 Sept | The perceptron algorithm. Kernels. The standard optimal algorithm. | sl02 | ch02 ch03 | prob02 | sol02 |
19 Sept | Prediction with expert advice. Recap probability theory (seminar). | sl03 | ch04 ch05 | ||
26 Sept | Multi-armed bandids. | ||||
03 Oct | Multi-armed bandids. | ||||
Part 2. Distribution independent risk bounds | |||||
10 Oct | Sample complexity in the realizable setting, simple examples and bounds using VC-dimension | sl04 | ch06 | ||
17 Oct | Growth functions, VC-dimension and the characterization of sample comlexity with VC-dimensions | sl05 | ch07 ch08 | ||
24 Oct | Risk decomposition and the fundamental theorem of statistical learning theory | sl06 | ch09 | ||
07 Nov | Bounded differences inequality, Rademacher complexity, symmetrization, contraction lemma. | sl07 | ch10 ch11 | ||
Part 3. Margin risk bounds with applications | |||||
14 Nov | Simple regression, support vector machines, margin risk bounds, and neural nets | sl08 | ch12 ch13 | ||
21 Nov | Kernels: RKHS, representer theorem, risk bounds | sl09 | ch14 | ||
28 Nov | AdaBoost and the margin hypothesis | sl10 | ch15 | ||
05 Dec | Implicit regularization of stochastic gradient descent in overparameterized neural nets | ch16 | |||
Part 4. Neural tangent kernels | |||||
09 Dec | Optional. Saturday 14h40, seminar 16h20. Double descent and wide neural nets at initialization. | ||||
12 Dec | Colloquium (you may choose between 12 Dec and 19 Dec). | ||||
16 Dec | Optional. Saturday 14h40, seminar 16h20. Evolution of NTK during stochastic gradient descent. | ||||
19 Dec | Colloquium |
Background on multi-armed bandits: A. Slivkins, [Introduction to multi-armed bandits https://arxiv.org/pdf/1904.07272.pdf], 2022.
The lectures in October and November are based on the book: Foundations of machine learning 2nd ed, Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalker, 2018. This book can be downloaded from Library Genesis (the link changes sometimes and sometimes vpn is needed).
Grading formula
Final grade = 0.35 * [score of homeworks] + 0.35 * [score of colloquium] + 0.3 * [score on the exam] + bonus from quizzes.
All homework questions have the same weight. Each solved extra homework task increases the score of the final exam by 1 point.
There is no rounding except on the final grade. Grades fractional grades above 5/10 are rounded up, those below 5/10 are rounded down.
Autogrades: if you only need 4/10 to pass with maximal final score, it will be given automatically. This may happen because of extra questions and bonuses from quizzes.
Colloquium
Rules and questions of previous year.
Problems exam
December 21--30, TBA.
-- You may use handwritten notes, lecture materials from this wiki (either printed or through your PC), Mohri's book
-- You may not search on the internet or interact with other humans (e.g. by phone, forums, etc)
Office hours
Bruno Bauwens: Wednesday 13h-16h, Friday 14h-20h, (better send an email in advance).
Maxim Kaledin: Write in Telegram, the time is flexible