Введение в анализ данных — различия между версиями
I.kosarev (обсуждение | вклад) м (→Семинары) |
I.kosarev (обсуждение | вклад) (→Семинары) |
||
Строка 45: | Строка 45: | ||
| ИАД-7 || [https://t.me/OnixinO Тамерлан Таболов] || [https://t.me/Debasering Николай Аверьянов], [https://t.me/greyworgen Сергей Тихонов], [https://t.me/userwaskicked Никита Крайко] || [https://zoom.us/j/93740294916?pwd=S20vN3loUytFVk1EamQ4MDhhY0V4UT09 Zoom] || [https://t.me/joinchat/RHVp06vSXeAmedPu Чат] || || | | ИАД-7 || [https://t.me/OnixinO Тамерлан Таболов] || [https://t.me/Debasering Николай Аверьянов], [https://t.me/greyworgen Сергей Тихонов], [https://t.me/userwaskicked Никита Крайко] || [https://zoom.us/j/93740294916?pwd=S20vN3loUytFVk1EamQ4MDhhY0V4UT09 Zoom] || [https://t.me/joinchat/RHVp06vSXeAmedPu Чат] || || | ||
|- | |- | ||
− | | БИ 3 курс || Косарев Илья] || Гусева Полина Александровна, Такташева Екатерина Вадимовна || [https://zoom.us/j/94624466609?pwd=ZnRhYy8zZmF0OFRhaHNDTjlCVFZxQT09 Zoom] || [https://t.me/joinchat/HKbLF0ki_iPqUjnY Чат] || || TmsBwpE | + | | БИ 3 курс || Косарев Илья] || Гусева Полина Александровна, Такташева Екатерина Вадимовна || [https://zoom.us/j/94624466609?pwd=ZnRhYy8zZmF0OFRhaHNDTjlCVFZxQT09 Zoom] || [https://t.me/joinchat/HKbLF0ki_iPqUjnY Чат] || || TmsBwpE |
|- | |- | ||
|} | |} |
Версия 16:29, 23 января 2021
Содержание
О курсе
Курс читается для студентов 2-го курса майнора ИАД в 3-4 модулях.
Проводится с 2015 года.
Лектор: Соколов Евгений Андреевич
Лекции проходят онлайн по средам в 11:10.
Полезные ссылки
Репозиторий с материалами на GitHub
Почта для сдачи домашних заданий (на самом деле задания сдаются в AnyTask, но если он не работает, то присылайте на почту): hse.minor.dm+<номер группы>@gmail.com (например, hse.minor.dm+3@gmail.com)
Канал в telegram для объявлений: https://t.me/hs_iad_2021
Чат в telegram для флуда: https://t.me/joinchat/Vuq4Lgi98RG22fQP
Ссылка на курс в Anytask: https://anytask.org/course/779
Таблица с оценками:
Семинары
Группа | Преподаватель | Учебные ассистенты | Zoom-конференция | Ссылка на чат | Материалы семинаров | Инвайт в anytask |
---|---|---|---|---|---|---|
ИАД-1 | Илья Косарев | Саночкин Юрий, Пащенко Анатолий | Zoom | Чат | Материалы | TmsBwpE |
ИАД-2 | Чиркова Надежда | Екатерина Кострыкина, Александра Штарёва | Zoom | Чат | ||
ИАД-3 | Кантонистова Елена | Михаил Олейник, Никита Патов | Zoom | Чат | ewfZ2I8 | |
ИАД-4 | Филатов Артём | Валерий Айхенвальд, Анастасия Бир | Zoom | Чат | 4TUKO0v | |
ИАД-5 | Владимир Омелюсик | Аня Аксенова, Александр Габиташвили | Zoom | Чат | Материалы | Kre5emJ |
ИАД-6 | Карпова Ася | Елена Гринкевич, Егор Масликов | Zoom | Чат | nSuRKac | |
ИАД-7 | Тамерлан Таболов | Николай Аверьянов, Сергей Тихонов, Никита Крайко | Zoom | Чат | ||
БИ 3 курс | Косарев Илья] | Гусева Полина Александровна, Такташева Екатерина Вадимовна | Zoom | Чат | TmsBwpE |
Правила выставления оценок
В курсе предусмотрено несколько форм контроля знания:
- Самостоятельные работы на семинарах, проверяющие знание основных фактов с лекций и семинаров
- Практические домашние работы на Python
- Контрольная где-то в середине курса
- Письменный экзамен
Итоговая оценка вычисляется на основе оценки за работу в семестре и оценки за экзамен:
Oитоговая = Округление(0.4 * ДЗ + 0.1 * ПР + 0.2 * КР + 0.3 * Э)
ДЗ — средняя оценка за практические домашние задания
ПР — средняя оценка за письменные проверочные работы на семинарах
КР — оценка за контрольную работу
Э — оценка за экзамен
Округление арифметическое.
Правила сдачи заданий
За каждый день просрочки после мягкого дедлайна снимается 1 балл. После жёсткого дедлайна работы не принимаются. Даже при опоздании на одну секунду. Сдавайте заранее.
При обнаружении плагиата оценки за домашнее задание обнуляются всем задействованным в списывании студентам, а также подаётся докладная записка в деканат. Следует помнить, что при повторном списывании деканат имеет право отчислить студента.
При наличии уважительной причины пропущенную проверочную можно написать позднее, а дедлайн по домашнему заданию может быть перенесён. Дедлайн по домашнему заданию переносится на количество дней, равное продолжительности уважительной причины. Решение о том, является ли причина уважительной, принимает исключительно учебный офис.
Лекции
Лекция 1 (20.01.2020). Введение в машинное обучение и анализ данных. [Слайды] [Запись лекции]
Семинары
Практические задания
За каждый день просрочки после мягкого дедлайна снимается 1 балл. После жёсткого дедлайна работы не принимаются, но есть исключение. В течение семестра каждый студент может не более 2 раз сдать задание после жёсткого дедлайна — в этом случае за каждый день просрочки продолжает вычитаться по одному баллу (если не оговорено иное).
В некоторых группах домашние задания могут отличаться. Уточняйте у семинариста.
Соревнования
Правила участия и оценивания
В соревновании по анализу данных вам предлагается по имеющимся данным решить некоторую задачу, оптимизируя указанную метрику, и отправить ответы для заданного тестового множества. Максимальное количество посылок в сутки ограничено (как правило, разрешается сделать 2 посылки), ближе к концу соревнования вам будем необходимо выбрать 2 посылки, которые вы считаете лучшими. Тестовые данные делятся на публичные и приватные в некотором соотношении, на основе которых строятся публичный и приватный лидерборды соответственно, при этом публичный лидерборд доступен в течение всего соревнования, а приватный строится после его окончания для выбранных вами посылок.
Студент, занявший в соревновании место i, получает оценку
10 - 10 * (i - 1) / M,
где M — количество студентов, принявших участие в соревновании;
i — место (начиная с 1) студента в приватном лидерборде среди всех таких студентов.
Чтобы вас не пропустили при проверке решений соревнования, необходимо использовать следующий формат для имени команды (вкладка Team):
«Имя Фамилия номер_группы»
В течение 3 суток после окончания соревнования в соответствующее задание на anytask необходимо прислать код, воспроизводящий ответы для посылки, фигурирующей в приватном лидерборде. В случае отсутствия кода, воспроизводящего результат, в установленный срок студенту выставляется 0 в качестве оценки за соревнование. Если не оговорено иное, использовать любые внешние данные в соревнованиях запрещено. Под внешними данными понимаются размеченные данные, где разметка имеет прямое отношение к решаемой задаче. Грубо говоря, сборник текстов с википедии не считается внешними данными.
Контрольная работа
Вопросы для подготовки с прошлого года: https://docs.google.com/document/d/1yuB17EoXyVSxqRslpFTKX97Kriuxn4lgFL5z4kQF9lU/edit?usp=sharing
На контрольной будет 4 вопроса. Два из них — по теории, где нужно будет объяснить одну из тем, разобранных на лекциях, или ответить на вопросы на понимание. Два вопроса — это задачи, примеры приведены ниже.
Примеры задач:
- Метрические методы, kNN [Примеры задач]
- Линейные методы [Примеры задач]
- Решающие деревья [Примеры задач]
- Метрики качества [Примеры задач]
Экзамен
Вопросы: https://docs.google.com/document/d/18kMS1f7NsdGEZy62MgfTGdgSq4P-6DVcnwr1ZJPLAqE/edit?usp=sharing
Примеры задач прошлого года (также могут войти задачи из коллоквиума)
Полезные материалы
Курсы по машинному обучению и анализу данных
Максимально близко к материалам курса: Специализация "Машинное обучение: от статистики до нейросетей" (речь про два курса: "Основы машинного обучения" и "Продвинутые методы машинного обучения")
Для тех, кто хочет подтянуть математику: Специализация "Математика для анализа данных"
Более сложная версия этого курса с ПМИ: Машинное обучение 1
Ещё материалы:
- Курс по машинному обучению К.В. Воронцова
- Видеозаписи лекций курса Школы Анализа Данных, К.В. Воронцов
- Coursera: Машинное обучение и анализ данных (специализация)
- Coursera: Введение в машинное обучение, К.В. Воронцов
- Coursera: Machine Learning, Andrew Ng
Статьи
- An Introduction to Machine Learning Theory and Its Applications: A Visual Tutorial with Examples
- A Visual Introduction to Machine Learning
Книги
- Mohammed J. Zaki, Wagner Meira Jr. Data Mining and Analysis. Fundamental Concepts and Algorithms. Cambridge University Press, 2014.
- Boris Mirkin. Core Concepts in Data Analysis: Summarization, Correlation, Visualization. 2010.
- James, Witten, Hastie, Tibshirani. An Introduction to Statistical Learning. 2013.