Theory of Computing 2019 2020 — различия между версиями
Материал из Wiki - Факультет компьютерных наук
Bbauwens (обсуждение | вклад) |
Bbauwens (обсуждение | вклад) |
||
Строка 62: | Строка 62: | ||
|- | |- | ||
|| 22/11 || Communication protocols. Functions EQ, GT, DISJ, IP. Fooling sets. Combinatorial rectangles. Rectangle size lower bound. Rank lower bound. Book: Nisan and Kushilevich: communication complexity, 1997[https://epdf.pub/communication-complexity.html download] | || 22/11 || Communication protocols. Functions EQ, GT, DISJ, IP. Fooling sets. Combinatorial rectangles. Rectangle size lower bound. Rank lower bound. Book: Nisan and Kushilevich: communication complexity, 1997[https://epdf.pub/communication-complexity.html download] | ||
− | || [https://www.dropbox.com/s/zn0nn6rzxvyjtwd/prob_11.pdf?dl=0 Problem list 11] | + | || [https://www.dropbox.com/s/zn0nn6rzxvyjtwd/prob_11.pdf?dl=0 Problem list 11] <span style="color:red">Updated: 22.11.19</span> |
|- | |- | ||
|| 29/11 || <span style="color:gray"> Nondeterministic communication complexity. D(f) < O(N^0(f) N^1(f)). Deterministic complexity vs number of leafs in a protocol tree. Randomized communication complexity: definitions. Functions EQ, GT, MCE. </span> | || 29/11 || <span style="color:gray"> Nondeterministic communication complexity. D(f) < O(N^0(f) N^1(f)). Deterministic complexity vs number of leafs in a protocol tree. Randomized communication complexity: definitions. Functions EQ, GT, MCE. </span> |
Версия 20:39, 22 ноября 2019
Содержание
General Information
Classes: Fridays, 15:10-18:00, R406
Dates and Deadlines
Homework 1, deadline: 4 October, before the lecture
Homework 2, deadline: 8 November, before the lecture
Homework 3, deadline: 6 December, before the lecture
Colloquium: 13 December.
Colloquium
Date and time: December 13, 15:10
Room: R405
Program
Course Materials
In the first 10 lectures, we follow Sipser's book "Introduction to the theory of computation" Chapters 7, 8, 9 (not Theorem 9.15), and Section 10.2.
If you need some background in math, consider these two sourses:
Lecure notes: Discrete Mathematics, L. Lovasz, K. Vesztergombi
Лекции по дискретной математике (черновик учебника, in Russian)
Date | Summary | Problem list |
---|---|---|
06.09 | Turing machines, multitape Turing machines, connection between them. Examples. Time and space complexity. Complexity classes P, PSPACE, EXP. | Problem list 1 Updated: 07.09.19 |
13.09 | Universal Turing machine. Space hierarchy theorem. Space constructable functions. | Problem list 2 |
20.09 | Complexity class NP. Examples. Inclusions between P, NP and PSPACE. Non-deterministic TMs. Another definition of NP. Polynomial reductions, their properties. NP-hardness and NP-completeness, their properties. | Problem list 3 |
27.09 | Circuit complexity. Examples. All functions are computed by circuits. Existence of functions with exponential circuit complexity. P is in P/poly. | Problem list 4 |
04.10 | NP-completeness: Circuit-SAT, 3-SAT, IND-SET, BIN-INT-PROG | Problem list 5 |
11.10 | NP-completeness: Subset-SUM, 3COLORING. coNP, completeness of CIRC-TAUT | Problem list 6 |
18.10 | Space complexity. Classes L, NL, PSPACE and NPSPACE. Directed Reachability is in SPACE(log^2 n). Configuration graph. Inclusions between time and space classes. TQBF problem, its PSPACE-completeness. PSPACE = NPSPACE. NSPACE(s(n)) is in SPACE(s(n)^2) for space constructable s. | Problem list 7 |
01.11 | PSPACE-completeness of formula game and generalized geography. Oracle computation definitions. There exists a language A for which P^A = NP^A. | Problem list 8 |
08.11 | There is an oracle B such that P^B is not equal to NP^B. Probabilistic computation. Probabilistic machines, the class BPP, invariance of the definition BPP for different thresholds, RP, coRP, PP, ZPP. | Problem list 9 |
15/11 | Streaming algorithms: finding the majority element, computation of the moment F_2 in logarithmic space, lower-bound for exact and probabilistic computation of F_0 using one-shot communication complexity. Roughgarden's lecture notes | Problem list 10 |
22/11 | Communication protocols. Functions EQ, GT, DISJ, IP. Fooling sets. Combinatorial rectangles. Rectangle size lower bound. Rank lower bound. Book: Nisan and Kushilevich: communication complexity, 1997download | Problem list 11 Updated: 22.11.19 |
29/11 | Nondeterministic communication complexity. D(f) < O(N^0(f) N^1(f)). Deterministic complexity vs number of leafs in a protocol tree. Randomized communication complexity: definitions. Functions EQ, GT, MCE. | |
6/12 | Probabilistic versus deterministic complexity. Newman's theorem. Space-time tradeoffs for Turing machines. See Nisan Kushilevich chapters 3 and 12. Lower bound for randomized 1-shot communication complexity of set disjointness, see Roughgarden's lecture notes). |
For interested students: lecture notes on quantum computation
Office hours
Person | Monday | Tuesday | Wednesday | Thursday | Friday |
---|---|---|---|---|---|
Vladimir Podolskii, room S830 | |||||
Bruno Bauwens, room S834 | 14-18h | 14-19h | 18-19h |