Discrete Mathematics DSBA2019/2020 — различия между версиями

Материал из Wiki - Факультет компьютерных наук
Перейти к: навигация, поиск
(In Russian)
(Recommended Reading)
Строка 27: Строка 27:
  
 
==Recommended Reading ==
 
==Recommended Reading ==
''Please pay attention that '''The Book''' for our course does not exist. The latter is based on many sources.''
+
''Please notice that '''The Book''' for our course does not exist. The latter is based on many sources.''
  
 
x.      Biggs N. L., Discrete mathematics. 2nd ed., New York; Oxford: Oxford University Press, 2004.
 
x.      Biggs N. L., Discrete mathematics. 2nd ed., New York; Oxford: Oxford University Press, 2004.

Версия 17:36, 25 августа 2019

Exams

Colloquiums

Materials

The Course's Google Drive directory contains various materials of use.

Problems Keywords
cw1 []

Schedule for office hours and consultations

Teacher / Assistant Monday Tuesday Wednesday Thursday Friday
Evgeny V. Dashkov
Boris R. Danilov

Recommended Reading

Please notice that The Book for our course does not exist. The latter is based on many sources.

x. Biggs N. L., Discrete mathematics. 2nd ed., New York; Oxford: Oxford University Press, 2004.

x. Lovasz L., Vesztergombi K. Discrete Mathematics. Lecture Notes; Yale University, 1999.

x. C. Stein, R. Drysdale, K. Bogart. Discrete mathematics for computer scientists. Pearson; 1 edition 2010

x. J. Anderson. Discrete Mathematics With Combinatroics. Prentice Hall; 2 edition 2003

x. K. Rosen. Discrete Mathematics and Its Applications. McGraw-Hill; 7th edition 2007

x. E. Lehman, F. Thomson Leighton, A. R. Meyer. Mathematics for Computer Science, http://courses.csail.mit.edu/6.042/spring17/mcs.pdf

In Russian

If you understand Russian (by any chance), you will probably benefit from reading the following books.

1. Виноградов И. М. Основы теории чисел. 9-е изд., М.: Наука, 1981.

2. Вялый М., Подольский В., Рубцов А., Шварц Д., Шень А. Лекции по дискретной математике.

3. Гаврилов Г. П., Сапоженко А. А. Задачи и упражнения по дискретной математике. 3-е изд., М.: ФИЗМАТЛИТ, 2004.

4. Дашков Е. В. Введение в математическую логику. Множества и отношения. М.: МФТИ, 2019.

5. Зубков А. М., Севастьянов Б. А., Чистяков В. П. Сборник задач по теории вероятностей. 2-е изд., М.: Наука, 1989.

6. Мельников О. И. Теория графов в занимательных задачах. 5-е изд., М.: Книжный дом "ЛИБРОКОМ", 2013.

5. Шень А., Математическая индукция. 5-е изд, М.: МЦНМО, 2016.

Additional Reading

  • R. Distel. Graph theory, GTM 173, 5th ed. 2016. Springer-Verlag, Heidelberg, Graduate Texts in Mathematics, Vol. 173, 447 p.
  • R. Hammack. Book of Proof, Virginia Commonwealth University 2013, https://www.people.vcu.edu/~rhammack/BookOfProof/BookOfProof.pdf
  • S. Jukna, Extremal Combinatorics. Texts in Theoretical Computer Science. An EATCS Series. 2nd ed. 2011, XXIV, 308 p.

Grading System

Intermediate grade-2 = (1/2) colloquium-2 + (1/2) homework-2.

Cumulative grade-3 = (3/10) colloquium-2 + (3/10) colloquium-3 + (4/10) homework-3.

Final grade = (7/10) cumulative grade-3 + (3/10) final exam.

The number in a grade’s name is the number of the module when grading takes place. The grade homework-n is the average grade for the homework in modules from 1 to n.