Discrete Mathematics DSBA2019/2020 — различия между версиями
Edashkov (обсуждение | вклад) (→In Russian) |
Edashkov (обсуждение | вклад) (→Recommended Reading) |
||
Строка 27: | Строка 27: | ||
==Recommended Reading == | ==Recommended Reading == | ||
− | ''Please | + | ''Please notice that '''The Book''' for our course does not exist. The latter is based on many sources.'' |
x. Biggs N. L., Discrete mathematics. 2nd ed., New York; Oxford: Oxford University Press, 2004. | x. Biggs N. L., Discrete mathematics. 2nd ed., New York; Oxford: Oxford University Press, 2004. |
Версия 17:36, 25 августа 2019
Содержание
Exams
Colloquiums
Materials
The Course's Google Drive directory contains various materials of use.
Problems | Keywords |
---|---|
cw1 | [] |
Schedule for office hours and consultations
Teacher / Assistant | Monday | Tuesday | Wednesday | Thursday | Friday |
---|---|---|---|---|---|
Evgeny V. Dashkov | |||||
Boris R. Danilov |
Recommended Reading
Please notice that The Book for our course does not exist. The latter is based on many sources.
x. Biggs N. L., Discrete mathematics. 2nd ed., New York; Oxford: Oxford University Press, 2004.
x. Lovasz L., Vesztergombi K. Discrete Mathematics. Lecture Notes; Yale University, 1999.
x. C. Stein, R. Drysdale, K. Bogart. Discrete mathematics for computer scientists. Pearson; 1 edition 2010
x. J. Anderson. Discrete Mathematics With Combinatroics. Prentice Hall; 2 edition 2003
x. K. Rosen. Discrete Mathematics and Its Applications. McGraw-Hill; 7th edition 2007
x. E. Lehman, F. Thomson Leighton, A. R. Meyer. Mathematics for Computer Science, http://courses.csail.mit.edu/6.042/spring17/mcs.pdf
In Russian
If you understand Russian (by any chance), you will probably benefit from reading the following books.
1. Виноградов И. М. Основы теории чисел. 9-е изд., М.: Наука, 1981.
2. Вялый М., Подольский В., Рубцов А., Шварц Д., Шень А. Лекции по дискретной математике.
3. Гаврилов Г. П., Сапоженко А. А. Задачи и упражнения по дискретной математике. 3-е изд., М.: ФИЗМАТЛИТ, 2004.
4. Дашков Е. В. Введение в математическую логику. Множества и отношения. М.: МФТИ, 2019.
5. Зубков А. М., Севастьянов Б. А., Чистяков В. П. Сборник задач по теории вероятностей. 2-е изд., М.: Наука, 1989.
6. Мельников О. И. Теория графов в занимательных задачах. 5-е изд., М.: Книжный дом "ЛИБРОКОМ", 2013.
5. Шень А., Математическая индукция. 5-е изд, М.: МЦНМО, 2016.
Additional Reading
- R. Distel. Graph theory, GTM 173, 5th ed. 2016. Springer-Verlag, Heidelberg, Graduate Texts in Mathematics, Vol. 173, 447 p.
- R. Hammack. Book of Proof, Virginia Commonwealth University 2013, https://www.people.vcu.edu/~rhammack/BookOfProof/BookOfProof.pdf
- S. Jukna, Extremal Combinatorics. Texts in Theoretical Computer Science. An EATCS Series. 2nd ed. 2011, XXIV, 308 p.
Grading System
Intermediate grade-2 = (1/2) colloquium-2 + (1/2) homework-2.
Cumulative grade-3 = (3/10) colloquium-2 + (3/10) colloquium-3 + (4/10) homework-3.
Final grade = (7/10) cumulative grade-3 + (3/10) final exam.
The number in a grade’s name is the number of the module when grading takes place. The grade homework-n is the average grade for the homework in modules from 1 to n.