Statistical learning theory 2018 2019 — различия между версиями

Материал из Wiki - Факультет компьютерных наук
Перейти к: навигация, поиск
Строка 1: Строка 1:
 
+
Segeralah Mendaftar langsung di
== General Information ==
+
* [https://macanplay.net/ Macanslot]
 
+
* [https://paradox3d.net/ InaTogel]
The [https://www.dropbox.com/s/8iivgt3a96yw308/syllabus_StatisticalLearning_Bach_2018_2019.pdf?dl=0 syllabus]
+
* [https://macanwin.net/ QqMacan]
 
+
* [https://lechers.cc/ RoyalToto]
[https://www.dropbox.com/s/dh2n9cmhpmx97nj/colloqQuest.pdf?dl=0 Questions colloquium on 29 October.] (Lectures 1-8 updated 24/10.)
+
* [https://xenogames.net/ JayaTogelUp]
 
+
* [https://eeooii.info/ Raja Slot4D]
Deadline homework 1: October 2nd. Questions: see seminars [https://www.dropbox.com/s/jb9mriumhtdpn8m/03sem.pdf?dl=0 3] and [https://www.dropbox.com/s/l2d9f7u77smrx4u/04sem.pdf?dl=0 4].
+
* [https://139.180.153.95/ Raja Slot4D]
 
+
* [https://209.58.183.93/ JayaTogelUp]
Deadline homework 2: October 27nd. Questions: see seminars 5-8 below.
+
* [https://ronin138.com/ Ronin138]
 
+
* [https://addicthealious.website/ slot 4d]
Deadline homework 3: December 11nd. Questions: see seminars 9-12 below.
+
* [https://18.142.23.191/ Macan Slot]
 
+
* [https://royaltotopedia.com RoyTop88]
[https://www.dropbox.com/s/dy9yu1ro4k5miet/List%20of%20Students_Bruno.xlsx?dl=0  Marks]
+
* [https://macanplay.com MacanSlot]
 
+
* [https://macantoto88.com Toto 88]
Intermediate exams: October 29th.
+
* [https://jayatogelup.com.com jayatogelup]
 
+
[https://ronin19.com/ Ronin138]
Final exam: December 20th, same system as for intermediate exams. [https://www.dropbox.com/s/uaxdredmmm5ke7t/finalTheoryQuest.pdf?dl=0 Theory questions]
+
[https://addicthealing.website/ slot 4d]
 
+
[https://jayatogelcc.cc/ jayatogel]
Consultation: December 17th, no lecture. Students can ask questions and ask for solutions of exercises.
+
[https://jayatogelcc.cc/ jayatogelcc]
 
+
[http://northcoaststeelhead.com/ northcoaststeelhead.com]
 
+
[http://supremeoutlet.us/ supremeoutlet.us]
== Course materials ==
+
[http://208.78.220.231/ freebet]
 
+
[http://blackfridaymichaelkors.us/ freebet]
{| class="wikitable"
+
[https://supremeshirtshop.us/ supremeshirtshop.us]
|-
+
[https://macanplayslot.web.fc2.com/ macanplay]
! Date !! Summary !! Lecture notes !! Problem list !! Solutions
+
[https://royaltotopedia4d.web.fc2.com/ royaltotopedia]
|-
+
[https://macanplay8.web.fc2.com/ macanplay slot]
| 3 Sept || PAC-learning in the realizable setting definitions  || [https://www.dropbox.com/s/l8e8xjfe2f8tjz8/01lect.pdf?dl=0 lecture1.pdf] updated 23/09
+
[https://royaltotopedia88.web.fc2.com/ royaltoto]
|| [https://www.dropbox.com/s/4ic3ce71znglmu9/01sem.pdf?dl=0 Problem list 1] || [https://www.dropbox.com/s/cixli4sghy0w01q/01solution.pdf?dl=0 Solutions 1]
+
[https://olxtotos.web.fc2.com/ olxtoto]
|-
+
[https://linklist.bio/OLX.TOTO olxtoto]
| 10 Sept || VC-dimension and growth functions || [https://www.dropbox.com/s/q1jc2dlotwdn9e2/02lect.pdf?dl=0 lecture2.pdf] updated 23/09 || [https://www.dropbox.com/s/4gimo3fij5p7lnc/02sem.pdf?dl=0 Problem list 2] || [https://www.dropbox.com/s/69pnkefexsmq6nu/02solution.pdf?dl=0 Solutions 2]
+
[https://c.mi.com/thread-4131553-1-0.html olxtoto]
|-
+
[https://heylink.me/FAFA138 fafa138]
| 17 Sept || Proof that finite VC-dimension implies PAC-learnability || [https://www.dropbox.com/s/9rfvwvf0ne95j8e/03lect.pdf?dl=0 lecture3.pdf] updated 23/09 || [https://www.dropbox.com/s/jb9mriumhtdpn8m/03sem.pdf?dl=0 Problem list 3] || [https://www.dropbox.com/s/f0gnrfxv9i7at91/03solution.pdf?dl=0 Solutions 3]
+
[https://heylink.me/FaFa138 fafa138]
|-
+
[https://heylink.me/Fafa138 fafa138]
| 24 Sept || Applications to decision trees and threshold neural networks. Agnostic PAC-learnability. || [https://www.dropbox.com/s/9oa2zg7jz2ovquf/04lect.pdf?dl=0 lecture4.pdf] || [https://www.dropbox.com/s/l2d9f7u77smrx4u/04sem.pdf?dl=0  Problem list 4] || [https://www.dropbox.com/s/t4tqtw7tdh54u2i/04solution.pdf?dl=0 Solution 4]
+
[https://magic.ly/FAFA138 fafa138]
|-
+
[https://fafa138slot.web.fc2.com fafa138]
| 1 Oct || Agnostic PAC-learnability is equivalent with finite VC-dimension, structural risk minimization || [https://www.dropbox.com/s/jsrse5qaqk2jhi1/05lect.pdf?dl=0 lecture5.pdf] 14/10 || [https://www.dropbox.com/s/etw67uq1pu5g58t/05sem.pdf?dl=0 Problem list 5] || [https://www.dropbox.com/s/6mpom53yrldcrjy/05solution.pdf?dl=0 Solution 5]
+
[https://heylink.me/FAFA138 fafa138]
|-
+
[http://ec2-13-250-3-146.ap-southeast-1.compute.amazonaws.com/ fafa138]
| 9 Oct || Boosting, Mohri's book pages 121-131. || [https://www.dropbox.com/s/m6tc4miryv6cs21/06lect.pdf?dl=0 lecture6.pdf] 23/10 || [https://www.dropbox.com/s/85t74k9wmibcnmr/06sem.pdf?dl=0 Problem list 6] || No solution.
+
|-
+
| 15 Oct || Rademacher complexity and contraction lemma (=Talagrand's lemma), Mohri's book pages 33-41 and 78-79 || [https://www.dropbox.com/s/y2vr3mrwp66cuvz/07lect.pdf?dl=0 lecture7.pdf] || [https://www.dropbox.com/s/cuo0tmfv4k2egvh/07sem.pdf?dl=0 Problem list 7] || See lecture7.pdf
+
|-
+
| 21 Oct || Margin theory and risk bounds for boosting. || [https://www.dropbox.com/s/o5zae3d8nw5eexw/08lect.pdf?dl=0 lecture8.pdf] || [https://www.dropbox.com/s/xg7u3ss1a0vog5j/08sem.pdf?dl=0 Problem list 8]|| See lecture6.pdf for ex. 8.6.
+
|-
+
| 12 Nov || Deep boosting, we study the paper [http://www.cs.nyu.edu/~mohri/pub/mboost.pdf Multi-class deep boosting], V. Kuznetsov, M Mohri, and U. Syed, Advances in Neural Information Processing Systems, p2501--2509, 2014. Notes will be provided. || [https://www.dropbox.com/s/tc7drmxwu53opzq/09lect.pdf?dl=0 lecture9.pdf] || [https://www.dropbox.com/s/lsu6tgmc767u3yd/09sem.pdf?dl=0 Problem list 9] || [https://www.dropbox.com/s/8wmswbynzx0s9hd/09sol.pdf?dl=0 Solutions 9.]
+
|-
+
| 19 Nov || Support vector machines, primal and dual optimization problem, risk bounds.  || See chapt. 5 of Mohri's book || [https://www.dropbox.com/s/ys37nsdfz3aa4ry/10sem.pdf?dl=0 Problem list 10]|| No solution.
+
|-
+
| 26 Nov || Kernels, Kernel reproducing Hilbert spaces, representer theorem, examples of kernels || [https://www.dropbox.com/s/xkic1j6r516ierl/11lect.pdf?dl=0 lecture11.pdf] || [https://www.dropbox.com/s/g3huq5aqzdaesrg/11sem.pdf?dl=0 Problem set 11] || Solutions: see lecture11.pdf
+
|-
+
| 3 Dec || A polynomial time improper learning algorithm for constant depth L1-regularized neural networks, from [http://www.jmlr.org/proceedings/papers/v48/zhangd16.pdf this paper].  Online algorithms: halving algorithm, weighted and exponentially weighted average algorithms. See Mohri's book Sections 7.1 and 7.2. || [https://www.dropbox.com/s/aq6798jps111l86/12lect.pdf?dl=0 lecture12.pdf] || [https://www.dropbox.com/s/o4t6smc70o1bt3t/12sem.pdf?dl=0 Problem list 12] || No solution.
+
|-
+
| 10 Dec || We finish online learning. Discuss the algorithm from [http://papers.nips.cc/paper/4616-bandit-algorithms-boost-brain-computer-interfaces-for-motor-task-selection-of-a-brain-controlled-button.pdf this paper].  || || See previous list. ||
+
|}
+
 
+
A gentle introduction to the materials of the first 3 lectures and an overview of probability theory, can be found in chapters 1-6 and 11-12 of the following book:
+
Sanjeev Kulkarni and Gilbert Harman: An Elementary Introduction to Statistical Learning Theory, 2012.
+
 
+
Afterward, we hope to cover chapters 1-8 from the book:
+
Foundations of machine learning, Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalker, 2012. These books can be downloaded from http://gen.lib.rus.ec/ .
+
 
+
<!--
+
(We will study a new boosting algorithm, based on the paper: )
+
-->
+
 
+
== Office hours ==
+
 
+
{| class="wikitable"
+
|-
+
! Person !! Monday !! Tuesday !! Wednesday !! Thursday !! Friday !!
+
|-
+
|  Bruno Bauwens ||  16:45&ndash;19:00 || 15:05&ndash;18:00 || || ||  || Room&nbsp;620
+
|-
+
|}
+
 
+
 
+
== Russian texts  ==
+
 
+
The following links might help students who have trouble with English.  A [http://www.machinelearning.ru/wiki/images/d/d9/Voron-2011-tnop.pdf  lecture] on VC-dimensions was given by K. Vorontsov.
+
A [http://machinelearning.ru/wiki/index.php?title=%D0%A2%D0%B5%D0%BE%D1%80%D0%B8%D1%8F_%D1%81%D1%82%D0%B0%D1%82%D0%B8%D1%81%D1%82%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%BE%D0%B3%D0%BE_%D0%BE%D0%B1%D1%83%D1%87%D0%B5%D0%BD%D0%B8%D1%8F_(%D0%BA%D1%83%D1%80%D1%81_%D0%BB%D0%B5%D0%BA%D1%86%D0%B8%D0%B9%2C_%D0%9D._%D0%9A._%D0%96%D0%B8%D0%B2%D0%BE%D1%82%D0%BE%D0%B2%D1%81%D0%BA%D0%B8%D0%B9) course] on Statistical Learning Theory by Nikita Zhivotovsky is given at MIPT. Some short description about PAC learning on p136 in the [http://gen.lib.rus.ec/search.php?req=%D0%9D%D0%B0%D1%83%D0%BA%D0%B0+%D0%B8+%D0%B8%D1%81%D0%BA%D1%83%D1%81%D1%81%D1%82%D0%B2%D0%BE+%D0%BF%D0%BE%D1%81%D1%82%D1%80%D0%BE%D0%B5%D0%BD%D0%B8%D1%8F+%D0%B0%D0%BB%D0%B3%D0%BE%D1%80%D0%B8%D1%82%D0%BC%D0%BE%D0%B2%2C+%D0%BA%D0%BE%D1%82%D0%BE%D1%80%D1%8B%D0%B5+%D0%B8%D0%B7%D0%B2%D0%BB%D0%B5%D0%BA%D0%B0%D1%8E%D1%82+%D0%B7%D0%BD%D0%B0%D0%BD%D0%B8%D1%8F+%D0%B8%D0%B7+%D0%B4%D0%B0%D0%BD%D0%BD%D1%8B%D1%85&lg_topic=libgen&open=0&view=simple&res=25&phrase=0&column=def book]
+
``Наука и искусство построения алгоритмов, которые извлекают знания из данных'', Петер Флах. On [http://www.machinelearning.ru machinelearning.ru]
+
you can find brief and clear definitions.
+

Версия 02:27, 18 августа 2022

Segeralah Mendaftar langsung di

Ronin138 slot 4d jayatogel jayatogelcc northcoaststeelhead.com supremeoutlet.us freebet freebet supremeshirtshop.us macanplay royaltotopedia macanplay slot royaltoto olxtoto olxtoto olxtoto fafa138 fafa138 fafa138 fafa138 fafa138 fafa138 fafa138