Statistical learning theory 2018 2019 — различия между версиями

Материал из Wiki - Факультет компьютерных наук
Перейти к: навигация, поиск
Строка 15: Строка 15:
 
|-
 
|-
 
| 10 sept || VC-dimension and growth functions || [https://www.dropbox.com/s/q1jc2dlotwdn9e2/02lect.pdf?dl=0 lecture2.pdf] || [https://www.dropbox.com/s/4gimo3fij5p7lnc/02sem.pdf?dl=0 Problem list 2] ||
 
| 10 sept || VC-dimension and growth functions || [https://www.dropbox.com/s/q1jc2dlotwdn9e2/02lect.pdf?dl=0 lecture2.pdf] || [https://www.dropbox.com/s/4gimo3fij5p7lnc/02sem.pdf?dl=0 Problem list 2] ||
 +
|-
 +
| 17 sept || Proof that finite VC-dimension implies PAC-learnability || [https://www.dropbox.com/s/9rfvwvf0ne95j8e/03lect.pdf?dl=0 lecture3.pdf] (part) || [https://www.dropbox.com/s/jb9mriumhtdpn8m/03sem.pdf?dl=0 Problem list 3] ||
 
|}
 
|}
  

Версия 00:20, 22 сентября 2018

General Information

The syllabus


Course materials

Date Summary Lecture notes Problem list Solutions
3 sept PAC-learning in the realizable setting definitions lecture1.pdf updated 14/09 Problem list 1
10 sept VC-dimension and growth functions lecture2.pdf Problem list 2
17 sept Proof that finite VC-dimension implies PAC-learnability lecture3.pdf (part) Problem list 3

A gentle introduction to the materials of the first 3 lectures and an overview of probability theory, can be found in chapters 1-6 and 11-12 of the following book: Sanjeev Kulkarni and Gilbert Harman: An Elementary Introduction to Statistical Learning Theory, 2012.

Afterwards, we hope to cover chapters 1-8 from the book: Foundations of machine learning, Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalker, 2012. These books can downloaded from http://gen.lib.rus.ec/ .


Office hours

Person Monday Tuesday Wednesday Thursday Friday
Bruno Bauwens 16:45–19:00 15:05–18:00 Room 620


Russian texts

The following links might help students who have trouble with English. A lecture on VC-dimensions was given by K. Vorontsov. A course on Statistical Learning Theory by Nikita Zhivotovsky is given at MIPT. Some short description about PAC learning on p136 in the book ``Наука и искусство построения алгоритмов, которые извлекают знания из данных, Петер Флах. On machinelearning.ru you can find brief and clear definitions.