Statistical learning theory 2018 2019 — различия между версиями
Bbauwens (обсуждение | вклад) |
Bbauwens (обсуждение | вклад) |
||
Строка 15: | Строка 15: | ||
|- | |- | ||
| 10 sept || VC-dimension and growth functions || [https://www.dropbox.com/s/q1jc2dlotwdn9e2/02lect.pdf?dl=0 lecture2.pdf] || [https://www.dropbox.com/s/4gimo3fij5p7lnc/02sem.pdf?dl=0 Problem list 2] || | | 10 sept || VC-dimension and growth functions || [https://www.dropbox.com/s/q1jc2dlotwdn9e2/02lect.pdf?dl=0 lecture2.pdf] || [https://www.dropbox.com/s/4gimo3fij5p7lnc/02sem.pdf?dl=0 Problem list 2] || | ||
+ | |- | ||
+ | | 17 sept || Proof that finite VC-dimension implies PAC-learnability || [https://www.dropbox.com/s/9rfvwvf0ne95j8e/03lect.pdf?dl=0 lecture3.pdf] (part) || [https://www.dropbox.com/s/jb9mriumhtdpn8m/03sem.pdf?dl=0 Problem list 3] || | ||
|} | |} | ||
Версия 00:20, 22 сентября 2018
General Information
The syllabus
Course materials
Date | Summary | Lecture notes | Problem list | Solutions |
---|---|---|---|---|
3 sept | PAC-learning in the realizable setting definitions | lecture1.pdf updated 14/09 | Problem list 1 | |
10 sept | VC-dimension and growth functions | lecture2.pdf | Problem list 2 | |
17 sept | Proof that finite VC-dimension implies PAC-learnability | lecture3.pdf (part) | Problem list 3 |
A gentle introduction to the materials of the first 3 lectures and an overview of probability theory, can be found in chapters 1-6 and 11-12 of the following book: Sanjeev Kulkarni and Gilbert Harman: An Elementary Introduction to Statistical Learning Theory, 2012.
Afterwards, we hope to cover chapters 1-8 from the book: Foundations of machine learning, Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalker, 2012. These books can downloaded from http://gen.lib.rus.ec/ .
Office hours
Person | Monday | Tuesday | Wednesday | Thursday | Friday | |
---|---|---|---|---|---|---|
Bruno Bauwens | 16:45–19:00 | 15:05–18:00 | Room 620 |
Russian texts
The following links might help students who have trouble with English. A lecture on VC-dimensions was given by K. Vorontsov. A course on Statistical Learning Theory by Nikita Zhivotovsky is given at MIPT. Some short description about PAC learning on p136 in the book ``Наука и искусство построения алгоритмов, которые извлекают знания из данных, Петер Флах. On machinelearning.ru you can find brief and clear definitions.