Введение в Data Science — различия между версиями

Материал из Wiki - Факультет компьютерных наук
Перейти к: навигация, поиск
Строка 31: Строка 31:
 
|-
 
|-
 
|2 || Обзор инструментов. Python || [https://drive.google.com/file/d/1CIN2jvRKzT4LCn1yeqDwg6jEZ_GG4pD0/view?usp=sharing Презентация к лекции 2]
 
|2 || Обзор инструментов. Python || [https://drive.google.com/file/d/1CIN2jvRKzT4LCn1yeqDwg6jEZ_GG4pD0/view?usp=sharing Презентация к лекции 2]
 +
|-
 +
|3 || Обзорная лекция про математику  || [https://yadi.sk/i/RM1H38ZA3UTWcA Презентация к лекции 3]
 
|}
 
|}
  

Версия 16:22, 16 апреля 2018

О курсе

Курс для студентов 1 курса ФБиМ направлений "Маркетинг и рыночная аналитика" и "Управление бизнесом"

Программа курса

Критерии оценки

Оценка за курс = 0.4*Семинары + 0.4*ДЗ + 0.2*Экзамен
Округление осуществляется по арифметическим правилам.

Семинары

  • На каждом семинаре выполняется небольшая самостоятельная работы по пройденной семе
  • Дедлайн семинарской работы - до конца занятия, но по решению преподавателя может быть отложен.
  • Система оценивания бинарная: 1 - если задание выполнено, 0 - если задание не сделано/сдано после дедлайна
  • Предусмотрено 11 семинаров
  • В конце семестра суммируется число выполненных заданий (max 11); сумма пропорционально переводится в 10-балльную шкалу
  • Студенты имеют право сдать строго 1 задание, не присутствуя на семинаре, в течение курса.

Домашние задания

  • В курсе предусмотрено 4 домашних задания
  • Дедлайны устаналиваются каждой группе индивидуально преподавателем. О сроках сдачи сообщают не менее, чем за 2 недели до дедлайна.

Экзамен

Материалы курса

Лекции

Тема Презентация !
1 Введение Презентация к лекции 1
2 Обзор инструментов. Python Презентация к лекции 2
3 Обзорная лекция про математику Презентация к лекции 3

Инструкция по установке и запуску среды

Скачать и установить анаконду:

1. Заходим по ссылке https://www.anaconda.com/download В центре надпись Download for, выбираем нужную ОС

2. Нажимаем на кнопку Download (Python 3.6 version) Дальше следуем инструкции https://docs.anaconda.com/anaconda/install/windows (для windows) https://docs.anaconda.com/anaconda/install/mac-os#macos-graphical-install (для macOS)

Домашнее задание и семнары вы будете выполнять в Jupyter'е. Чтобы его запустить, нужно открыть Ananconda Navigator и там под иконкой Jupyter Notebook (не путать с Jupyterlab) нажать на launch.


Семинары

Для работы в классе (при желании) на собственных ноутбуках и самостоятельного изучения рекомендуем установить Anaconda, Python версии 3.6 и выше.

Тема Ноутбук Датасет
1 Введение в язык Скачать IPython Notebook Нет
2 Введение в Pandas Скачать IPython Notebook Датасет для работы на семинаре

Датасет для самостоятельной работы

3 Описательная статистика в Python Скачать IPython Notebook Датасет для самостоятельной работы
4 A/B-тестирование Скачать IPython Notebook Датасет для работы в классе

Датасет для самостоятельной работы

5 Визуализация данных
6 - 7 Классификация. Метрики качества
8 Кластеризация
9 Регрессия. Метрики качества
10 Временные ряды
11 Анализ текстов

Рабочие ведомости

Маркетинг и рыночная аналитика

БММ 171
БММ 172
БММ 173

Управление бизнесом

БМБ 171
БМБ 172
БМБ 173
БМБ 174
БМБ 175
БМБ 176
БМБ 177
БМБ 178

Источники данных

Kaggle Datasets

UCI Machine Learning Repository

Дополнительное

Материалы

http://pythontutor.ru/ Интерактивное введение в python на русском языке

https://hub.mybinder.org/user/ipython-ipython-in-depth-sb49fn69/notebooks/binder/Index.ipynb Введение в IPython (Изучите хотя бы первую часть Notebook Basics (знакомство с интефейсом))

100 упражнений для numpy
Сборник из 100 упражнений для знакомства с библиотекой numpy: есть версии без ответов и подсказок, с подсказками, с эталонными ответами

Мероприятия

Data & Science: управление проектами, 14 апреля 2018, Москва — События Яндекса

Преподаватели

Лекции

Александр Белугин

Александр Антонов

Семинары

Дмитрий Сергеев

Ульянкин Филипп

  • @ppilif (Telegram)
  • /ppilif (vk.com)

Василий Панин

  • @VasilyPanin (Telegram)

Валерий Бабушкин

Елена Романова

Ольга Дайховская

Элен Теванян


Марат Ахматнуров

  • marat.akhmatnurov@yandex.ru
  • @maratakhmatnurov (Telegram, in case of emergency)