Современные методы машинного обучения (курс майнора) ИАД2-6 — различия между версиями
м (→Майнор по курсу "Современные методы машинного обучения" - 2016/2017 учебный год - ИАД-2 и ИАД-6) |
(→Семинары) |
||
Строка 24: | Строка 24: | ||
'''6) 20 октября 2016:''' Multilayered Perceptron - [https://www.dropbox.com/s/pq0tsya61uljr9w/6.MLP.ipynb?dl=0 Notebook]<br/> | '''6) 20 октября 2016:''' Multilayered Perceptron - [https://www.dropbox.com/s/pq0tsya61uljr9w/6.MLP.ipynb?dl=0 Notebook]<br/> | ||
'''7) 10 ноября 2016:''' Градиентный бустинг, Xgboost - [http://nbviewer.jupyter.org/github/cs-hse/ML_DM_HSE_minor/blob/master/module3_advanced_ML_notebooks/seminar7_boosting/part01_boosting.ipynb Notebook] <br/> | '''7) 10 ноября 2016:''' Градиентный бустинг, Xgboost - [http://nbviewer.jupyter.org/github/cs-hse/ML_DM_HSE_minor/blob/master/module3_advanced_ML_notebooks/seminar7_boosting/part01_boosting.ipynb Notebook] <br/> | ||
+ | '''10) 1 декабря 2016.''' Непараметрические тесты, корреляция. Ноутбуки: [https://github.com/grafft/hse-tasks/tree/master/minor-aml-16/sem9 1], [https://github.com/grafft/hse-tasks/tree/master/minor-aml-16/sem10 2]. | ||
== Домашние Задания == | == Домашние Задания == |
Версия 12:13, 1 декабря 2016
Содержание
Майнор по курсу "Современные методы машинного обучения" - 2016/2017 учебный год - ИАД-2 и ИАД-6
Семинаристы: Паринов Андрей Андреевич, e-mail: aparinov@gmail.com , Кашницкий Юрий Савельевич, e-mail: yury.kashnitsky@gmail.com
Ассистент: Айбек Аланов, e-mail: alanov.aibek@gmail.com
Все новости, вопросы и обсуждения – в форуме Piazza.
Материалы – в репозитории GitHub.
Страница курса
Таблица с оценками [1]
Результирующая оценка по дисциплине рассчитывается по формуле: Oитог=0.7 Oнакопл+0.3 Oэкз
Накопленная оценка рассчитывается по формуле: Oнакопл=0.15 Oсамост+0.15 Oауд+0.5 Oдз+0.2 Oколлоквиум
Анонимные комментарии, замечания и пожелания можно оставить здесь
Семинары
1) 15 сентября 2016: Метод опорных векторов. Ядра - IPython Notebook
2) 22 сентября 2016: Стохастический градиент - Data&Notebook
3) 29 сентября 2016: Предобработка данных - Notebook
4) 6 октября 2016: Предобработка данных 2 - Notebook
5) 20 октября 2016: Bagging. RF. Boosting - Notebook
6) 20 октября 2016: Multilayered Perceptron - Notebook
7) 10 ноября 2016: Градиентный бустинг, Xgboost - Notebook
10) 1 декабря 2016. Непараметрические тесты, корреляция. Ноутбуки: 1, 2.
Домашние Задания
[ДЗ 1.] Данные. Срок – 30 сентября 2016
[ДЗ 2.]
Статья Срок – 26 октября 2016
[ДЗ 3.] ЦПТ. Срок – 24 ноября 2016
[ДЗ 4.] Удержание клиентов. Срок – 1 декабря 2016
Полезные ссылки
Семинар 1
Pandas & Seaborn
Наборы данных
FYI
Семинар 1
Python
- PEP-8 Code Style Guide Cheat-sheet
- Python Tutorials Point
- Matplotlib Tutorial
- Matrix Manipulation Cheat-sheet
- Ipython Notebook
- Beaker Notebook
- yhat Rodeo
Ресурсы и Книги
- James, Witten, Hastie, Tibshirani — An Introduction to Statistical Learning
- Bishop — Pattern Recognition and Machine Learning (первые главы)
- MachineLearning.ru
- Kaggle
- UCI Repo
- Visual Intro to ML
Онлайн Курсы