Майнор Интеллектуальный анализ данных/Введение в анализ данных/ИАД-18 — различия между версиями
Материал из Wiki - Факультет компьютерных наук
Igtm (обсуждение | вклад) (→Расписание семинаров) |
Igtm (обсуждение | вклад) (→Расписание семинаров) |
||
Строка 48: | Строка 48: | ||
[https://www.dropbox.com/s/lydfd3bss5ke47z/%D0%A2%D0%B5%D1%80%D0%B2%D0%B5%D1%80_%D0%B7%D0%B0%D0%B4%D0%B0%D1%87%D0%B8.pdf?dl=0 Задачи] | [https://www.dropbox.com/s/lydfd3bss5ke47z/%D0%A2%D0%B5%D1%80%D0%B2%D0%B5%D1%80_%D0%B7%D0%B0%D0%B4%D0%B0%D1%87%D0%B8.pdf?dl=0 Задачи] | ||
|- | |- | ||
− | |15 марта 2016 || align="center"| | + | |15 марта 2016 || align="center"|9 || Консультация. Ridge и Lasso регрессии. || |
[http://nbviewer.jupyter.org/urls/dl.dropbox.com/s/t8fum2v9zuaduwz/sem_6.ipynb ipython notebook] | [http://nbviewer.jupyter.org/urls/dl.dropbox.com/s/t8fum2v9zuaduwz/sem_6.ipynb ipython notebook] | ||
|- | |- | ||
− | |26 апреля 2016 || align="center"| | + | |26 апреля 2016 || align="center"|10 || Пример работы с реальными данными (разбор проекта) || |
[http://nbviewer.jupyter.org/urls/dl.dropbox.com/s/uh64e2mcu9dy924/project_s.ipynb ipython notebook] | [http://nbviewer.jupyter.org/urls/dl.dropbox.com/s/uh64e2mcu9dy924/project_s.ipynb ipython notebook] | ||
|} | |} |
Версия 00:16, 30 апреля 2016
Общая информация
|
Выставление оценки
- На семинарах по некоторым темам будут проводиться проверочные работы.
- Также за курс будут выданы несколько практических заданий, которые будут оцениваться по десятибалльной шкале. На выполнение каждого практического задание будет даваться 2 недели. Штраф за просрочку сдачи составляет 0.2 балла в день.
- Оценка за работу в семестре будет ставиться исходя из набранных баллов.
- В конце семестра разрешается переписать одну пропущенную по любой причине проверочную работу. Также разрешается переписать все проверочные, пропущенные по уважительной причине.
- Результаты работ ИАД - 18
Расписание семинаров
Дата | № занятия | Занятие | Материалы |
---|---|---|---|
12 января 2016 | 1 | Вводный семинар. Обсуждение основных понятий анализа данных. | |
19 января 2016 | 2 | Python для анализа данных. NumPy. | ipython notebook с семинара |
26 января 2016 | 3 | Python для анализа данных. Pandas. Matplotlib. | |
02 февраля 2016 | 4 | Решение задач. | |
09 февраля 2016 | 5 | Градиентный спуск. Линейная регрессия. | |
16 февраля 2016 | 6 | Градиентный спуск. | |
01 марта 2016 | 7 | Градиентный спуск. Понятия Ridge и Lasso регрессии. | |
15 марта 2016 | 8 | Теория вероятностей. Решение задач на формулу полной вероятности и формулу Байеса. | |
15 марта 2016 | 9 | Консультация. Ridge и Lasso регрессии. | |
26 апреля 2016 | 10 | Пример работы с реальными данными (разбор проекта) |
Практические задания
Практическое задание №1 "Изучение Numpy, Pandas, Matplotlib"
Практическое задание №2 "Методы линейной регрессии"