Lecture 6. Synonyms and near-synonyms detection — различия между версиями

Материал из Wiki - Факультет компьютерных наук
Перейти к: навигация, поиск
(Distributional semantics)
(Context-based approach (1) [Lin, 1998])
Строка 69: Строка 69:
  
 
=== Context-based approach (1) [Lin, 1998] ===
 
=== Context-based approach (1) [Lin, 1998] ===
 +
 +
==== Dependency triple [Lin, 1998] ====
 +
 +
A dependency triple (w, r, w') consists of two words and the grammatical relationship between them in the input sentence.
 +
 +
I have a brown dog: (have subj I), (I subj-of have), (dog obj-of have), (dog adj-mod brown), (brown adj-mod-of dog), (dog det a), (a det-of dog)
 +
 +
||w, r, w'|| — frequency of (w, r, w')
 +
 +
||w, r, * || — total occurrences of w-r relationships
 +
 +
|| *, *, *|| — total number of dependency triples
 +
 +
 +
Mutual information between w, w':
 +
 +
[[Файл:L6p2.jpg|300px|слева]]
 +
 +
 +
 +
 +
[[Файл:L6p3.jpg|300px|слева]]
 +
 +
<br> <br> <br> <br> <br> <br>
 +
 +
Results: '''brief(noun)''' — affidavit 0.13, petition 0.05, memo-randum 0.05, motion 0.05, lawsuit 0.05, depo-sition 0.05, slight 0.05, prospectus 0.04, docu-ment 0.04 paper 0.04
 +
* some sort of dependency parsing is required
 +
* no difference between synonyms and antonyms (win / loose the game)
  
 
=== Web or corpus search approach ===
 
=== Web or corpus search approach ===

Версия 03:31, 3 сентября 2015

Examples

  • Synonyms: Netherlands and Holland, buy and purchase
  • Near synonyms: pants, trousers and slacks, mistake and error

Approaches to synonyms and near-synonyms detection

  • Thesaurus-based approach
  • Distributional semantics
  • Context-based approach
  • word2vec
  • Web search-based approach

Synonyms in WordNet

Given a word, look for synonyms in every synset.

WordNet NLTK interface

In[1]: for i,j in enumerate(wn.synsets('error')):

In[2]: print "Meaning",i, "NLTK ID:", j.name()

In[3]: print "Definition:",j.definition()

In[4]: print "Synonyms:", ", ".join(j.lemma names())

Wordnet Web interface: [1]

Distributional semantics

L6p1.jpg































































Exercise 6.1

Calculate PPMI for Table 1.

Exercise 6.2

Input: def.txt or your own text

Output 1: term-context matrix

Output 2: term-term similarity matrix (use cosine similarity)

Output 3: 2D visualization by means of LSA

Hint: use cfd = nltk.ConditionalFreqDist((term, context) for ...) for computing conditional frequency dictionary

Hint: use R for SVD and visualization

word2vec [Mikolov, Chen, Corrado, Dean, 2013]

Very complex machine learning (deep learning) applied to term-context matrices.

There are two regimes:

  • CBOW predicts the current word based on the context
  • Skip-gram predicts surrounding words given the current word

word2vec project page: [2] demo: [3]

Example: vec(Madrid) - vec(Spain) + vec(France) = vec(Paris)

Context-based approach (1) [Lin, 1998]

Dependency triple [Lin, 1998]

A dependency triple (w, r, w') consists of two words and the grammatical relationship between them in the input sentence.

I have a brown dog: (have subj I), (I subj-of have), (dog obj-of have), (dog adj-mod brown), (brown adj-mod-of dog), (dog det a), (a det-of dog)

||w, r, w'|| — frequency of (w, r, w')

||w, r, * || — total occurrences of w-r relationships

|| *, *, *|| — total number of dependency triples


Mutual information between w, w':

L6p2.jpg



L6p3.jpg







Results: brief(noun) — affidavit 0.13, petition 0.05, memo-randum 0.05, motion 0.05, lawsuit 0.05, depo-sition 0.05, slight 0.05, prospectus 0.04, docu-ment 0.04 paper 0.04

  • some sort of dependency parsing is required
  • no difference between synonyms and antonyms (win / loose the game)

Web or corpus search approach