Stochastic processes and applications DSBA 2025/2026 — различия между версиями

Материал из Wiki - Факультет компьютерных наук
Перейти к: навигация, поиск
 
(не показаны 3 промежуточные версии этого же участника)
Строка 10: Строка 10:
  
 
Hand made [https://e.pcloud.link/publink/show?code=kZj5BOZAb8qNTSGI6LiGLeLWvMd4LMu4hsk videos with love]!
 
Hand made [https://e.pcloud.link/publink/show?code=kZj5BOZAb8qNTSGI6LiGLeLWvMd4LMu4hsk videos with love]!
 +
 +
Class notes [https://disk.360.yandex.ru/d/ViBiodE8BPk2Aw disk]
  
 
=== Home assignments, exams and grading ===
 
=== Home assignments, exams and grading ===
Строка 26: Строка 28:
  
 
2025-09-02, lecture 1: Rules of the game, definition of a Markov chain, Chapman-Kolmogorov equations, calculation of n-step transition probabilities, failed attempt to discuss first step analysis. Check 1.1-2.1 from [https://www.statslab.cam.ac.uk/~rrw1/markov/M.pdf Mchains]
 
2025-09-02, lecture 1: Rules of the game, definition of a Markov chain, Chapman-Kolmogorov equations, calculation of n-step transition probabilities, failed attempt to discuss first step analysis. Check 1.1-2.1 from [https://www.statslab.cam.ac.uk/~rrw1/markov/M.pdf Mchains]
 +
 +
2025-09-30, lecture 5: Irreducible chain. Proportion of life spent at a node wo proof. Knight on the chessboard problem. Stationary state. Period of a node. Aperiodic node. Existence of a stationary distribution wo proof. Convergence to a stationary distribution wo proof.
 +
 +
2025-10-07, lecture 6: Convergence in probability. Convergence almost surely. Convergence in mean. Convergence in distribution. Examples. Relationship between convergence modes wo proof.
 +
 +
2025-11-11, lecture 9: Три определения пуассоновского потока и (на 75%) доказательство их эквивалентности. Через экспоненциальное, через Пуассона и через о-малые. Формулировку свойств минимума экспоненциальных распределений без доказательств. Определение марковской цепи в непрерывном времени (через экспоненциальные времена в каждом состоянии).
  
  

Текущая версия на 11:47, 15 ноября 2025

Course goals

侍には目標がなく道しかない [Samurai niwa mokuhyō ga naku michi shikanai]

A samurai has no goal, only a path.

Course whitepaper

Telegram chat (не берёт на парковке)

Hand made videos with love!

Class notes disk

Home assignments, exams and grading

Stochastic Processes = 0.35 Halloween Exam + 0.40 Ded Moroz Exam + 0.25 Home Assignments

Home assignments!

Almost surely every week a new home assignment will be published. You are not required to hand in the HA, but next class will include a quiz with one or two problems extremely similar to the HA. Once during the course HA will be in the form of a computer assisted project. At the end of the course you have 5 honey pots: a right to rewrite 5 missed or badly written quizzes.

Past exams

Exercise collection

Samurai diary: Stochastic Process

2025-09-02, lecture 1: Rules of the game, definition of a Markov chain, Chapman-Kolmogorov equations, calculation of n-step transition probabilities, failed attempt to discuss first step analysis. Check 1.1-2.1 from Mchains

2025-09-30, lecture 5: Irreducible chain. Proportion of life spent at a node wo proof. Knight on the chessboard problem. Stationary state. Period of a node. Aperiodic node. Existence of a stationary distribution wo proof. Convergence to a stationary distribution wo proof.

2025-10-07, lecture 6: Convergence in probability. Convergence almost surely. Convergence in mean. Convergence in distribution. Examples. Relationship between convergence modes wo proof.

2025-11-11, lecture 9: Три определения пуассоновского потока и (на 75%) доказательство их эквивалентности. Через экспоненциальное, через Пуассона и через о-малые. Формулировку свойств минимума экспоненциальных распределений без доказательств. Определение марковской цепи в непрерывном времени (через экспоненциальные времена в каждом состоянии).


Classes

2025-09-06, class 1:

Sources of Wisdom

StoPro: Problems in Stochastic Processes

In2Pro: Blitstein, Hwang, Introduction to probability.

Mchains Cambridge lectures on Markov chains.

MarkovTex: Representing Markov Chains in Latex.

Takis: Takis Konstantinopulos, One hundred solved exercises on Markov chains.

Convergence modes review from Cornell university

Convergence modes: Saravan Vijayakumaran, convergence modes with examples

ts2010: Aad van der Vaart, Time Series course with hardcore math


Past course iterations: 2024-2025, 2023-2024, 2022-2023, 2021-2022, 2020-2021.