НИС Методы и алгоритмы защиты информации — различия между версиями

Материал из Wiki - Факультет компьютерных наук
Перейти к: навигация, поиск
м
 
(не показаны 4 промежуточные версии этого же участника)
Строка 20: Строка 20:
  
 
[https://classroom.google.com/c/Mzk2NTQ5NTgxNTMy?cjc=5bu3i5l Классрум для сдачи домашних заданий]
 
[https://classroom.google.com/c/Mzk2NTQ5NTgxNTMy?cjc=5bu3i5l Классрум для сдачи домашних заданий]
 +
 +
[https://disk.yandex.ru/i/MPbycEM8J4PXbA Программа экзамена]
  
 
== План семинара ==  
 
== План семинара ==  
Строка 29: Строка 31:
 
! № !! Тема доклада !! Литература !! Отвечающий доклад !! Дата выступления || Отметка о выполнении || Дедлайн ДЗ || Отметка о проверке
 
! № !! Тема доклада !! Литература !! Отвечающий доклад !! Дата выступления || Отметка о выполнении || Дедлайн ДЗ || Отметка о проверке
 
|-
 
|-
| 1 || Простейшие криптосистемы. Сдвиг и аффинное преобразование.<br/> Частотный анализ. Биграммы. Ключ шифрования и ключ дешифрования.<br/> Классические криптосистемы и системы с открытым ключом || К, Гл. III, пар. 1<br/> К, Гл. IV, пар. 1 || <center>Кунин Илья</center> || <center>21.09.2021</center> || <center>completed</center> || <center>05.10.2021</center> || <center>completed</center>
+
| 1 || Простейшие криптосистемы. Сдвиг и аффинное преобразование.<br/> Частотный анализ. Биграммы. Ключ шифрования и ключ дешифрования.<br/> Классические криптосистемы и системы с открытым ключом || К, Гл. III, пар. 1<br/> К, Гл. IV, пар. 1 || <center>Кунин Илья</center> || <center>21.09.2021</center> || <center></center> || <center>05.10.2021</center> || <center></center>
 
|-
 
|-
| 2 || Необходимые факты из теории чисел: обратимость вычета по данному модулю,<br/> алгоритм нахождения обратного элемента, малая теорема Ферма,<br/> функция Эйлера и теорема Эйлера, китайская теорема об остатках,<br/> возведение в степень методом повторного возведения в квадрат|| K, Гл. I || <center>Красковский Дмитрий</center> || <center>05.10.2021</center> || <center>completed</center> || <center>21.10.2021</center> ||
+
| 2 || Необходимые факты из теории чисел: обратимость вычета по данному модулю,<br/> алгоритм нахождения обратного элемента, малая теорема Ферма,<br/> функция Эйлера и теорема Эйлера, китайская теорема об остатках,<br/> возведение в степень методом повторного возведения в квадрат|| K, Гл. I || <center>Красковский Дмитрий</center> || <center>05.10.2021</center> || <center></center> || <center>21.10.2021</center> || <center>✔</center>
 
|-
 
|-
 
| 3 || Строение конечных полей || ЛН || <center>-</center> || <center>-</center> || <center>-</center> || <center>-</center> || <center>-</center>
 
| 3 || Строение конечных полей || ЛН || <center>-</center> || <center>-</center> || <center>-</center> || <center>-</center> || <center>-</center>
 
|-
 
|-
| 4 || Квадратичные вычеты и закон взаимности|| K, Гл. II, пар. 2 || <center>Зобнин Алексей</center> || <center>05.10.2021</center> || <center>completed</center> || <center>21.10.2021</center> || <center>completed</center>
+
| 4 || Квадратичные вычеты и закон взаимности|| K, Гл. II, пар. 2 || <center>Зобнин Алексей</center> || <center>05.10.2021</center> || <center></center> || <center>21.10.2021</center> || <center></center>
 
|-
 
|-
| 5 || Необходимые сведения из алгебры: группы и подгруппы, примеры конечных групп,<br/> порядок элемента, циклические группы и их порождающие || любой учебник по алгебре || <center>Неймышева Юлия</center> || <center>26.10.2021</center> || <center>completed</center> || <center>09.11.2021</center> || <center>completed</center>
+
| 5 || Необходимые сведения из алгебры: группы и подгруппы, примеры конечных групп,<br/> порядок элемента, циклические группы и их порождающие || любой учебник по алгебре || <center>Неймышева Юлия</center> || <center>26.10.2021</center> || <center></center> || <center>09.11.2021</center> || <center></center>
 
|-
 
|-
| 6 || Криптосистема RSA|| K, Гл. IV, пар. 2<br/> П, 1.2 || <center>Куликов Богдан</center> || <center>26.10.2021</center> || <center>completed</center> || <center>09.11.2021</center> || <center>completed</center>
+
| 6 || Криптосистема RSA|| K, Гл. IV, пар. 2<br/> П, 1.2 || <center>Куликов Богдан</center> || <center>26.10.2021</center> || <center></center> || <center>09.11.2021</center> || <center></center>
 
|-
 
|-
| 7 || Задача дискретного логарифмирования и основанные на ней криптосистемы:<br/> система Диффи-Хеллмана обмена ключами, системы Мэсси-Омура и Эль-Гамаля. Понятие электронной подписи. Электронная подпись в RSA и по Эль-Гамалю || K, Гл. IV, пар. 1, 3<br/> П, 1.3<br/> В, Гл. 5 || <center>Каменский Андрей</center> || <center>09.11.2021</center> || <center>completed</center> || <center>TBA</center> ||
+
| 7 || Задача дискретного логарифмирования и основанные на ней криптосистемы:<br/> система Диффи-Хеллмана обмена ключами, системы Мэсси-Омура и Эль-Гамаля. Понятие электронной подписи. Электронная подпись в RSA и по Эль-Гамалю || K, Гл. IV, пар. 1, 3<br/> П, 1.3<br/> В, Гл. 5 || <center>Каменский Андрей</center> || <center>09.11.2021</center> || <center></center> || <center>10.01.2022</center> ||
 
|-
 
|-
| 8 || Проверка чисел на простоту и задача факторизации. Решето Эратосфена. Псевдопростые числа и числа Кармайкла. Метод Поклингтона.<br/> (p-1)-метод Полларда. || K, Гл. V <br/>П, 2.4 <br/>В, Гл. 1-2 || <center>Абаев Фёдор</center> || <center>09.11.2021</center> || <center>completed</center> || <center>23.11.2021</center> ||
+
| 8 || Проверка чисел на простоту и задача факторизации. Решето Эратосфена. Псевдопростые числа и числа Кармайкла. Метод Поклингтона.<br/> (p-1)-метод Полларда. || K, Гл. V <br/>П, 2.4 <br/>В, Гл. 1-2 || <center>Абаев Фёдор</center> || <center>09.11.2021</center> || <center></center> || <center>23.11.2021</center> || <center>✔</center>
 
|-
 
|-
| 9 || Задача о рюкзаке как задача комбинаторной оптимизации.<br/> Быстрорастущие наборы. Рюкзачная криптосистема || K, Гл. IV, пар. 4 || <center>Соколов Александр</center> || <center>??.??.????</center> || || <center>TBA</center> ||
+
| 9 || Задача о рюкзаке как задача комбинаторной оптимизации.<br/> Быстрорастущие наборы. Рюкзачная криптосистема || K, Гл. IV, пар. 4 || <center>Ломакин Павел</center> || <center>08.02.2022</center> || <center>✔</center> || <center>22.02.2022</center> || <center>✔</center>
 
|-
 
|-
| 10 || Протоколы с нулевым разглашением. Три примера: раскраска карты в три цвета,<br/> поиск гамильтонова пути и извлечение корня в кольце вычетов || K, Гл. IV, пар. 5 || <center>Гайсин Ислам</center> || <center>09.11.2021</center> || <center>completed</center> || <center>-</center> || <center>-</center>
+
| 10 || Протоколы с нулевым разглашением. Три примера: раскраска карты в три цвета,<br/> поиск гамильтонова пути и извлечение корня в кольце вычетов || K, Гл. IV, пар. 5 || <center>Гайсин Ислам</center> || <center>09.11.2021</center> || <center></center> || <center>-</center> || <center>-</center>
 
|-
 
|-
| 11 || Математика разделенного секрета. Пороговые (n,k)-схемы доступа.<br/> Схема Шамира и схема Блэкли. Связь с теорией матроидов || Я, Гл. 5 || <center>Коннов Илья</center> || <center>23.11.2021</center> || <center>completed</center> || <center>14.12.2021</center> ||
+
| 11 || Математика разделенного секрета. Пороговые (n,k)-схемы доступа.<br/> Схема Шамира и схема Блэкли. Связь с теорией матроидов || Я, Гл. 5 || <center>Коннов Илья</center> || <center>23.11.2021</center> || <center></center> || <center>10.01.2022</center> || <center>✔</center>
 
|-
 
|-
| 12 || Криптосистема Рабина. McEliece || - || <center>Егоров Михаил</center> || <center>07.12.2021</center> || || <center>TBA</center> ||
+
| 12 || Криптосистема Рабина. McEliece || - || <center>Егоров Михаил</center> || <center>11.01.2022</center> || <center>✔</center> || <center>24.01.2022</center> || <center>✔</center>
 
|-
 
|-
| 13 || Математика эллиптических кривых: групповой закон, формулы сложения и<br/> удвоения точек, теорема Хассе о числе точек на эллиптической кривой || K, Гл. VI, пар. 1<br/> П, гл. 4 || <center>Капустин Егор</center> || <center>07.12.2021</center> || || <center>TBA</center> ||
+
| 13 || Математика эллиптических кривых: групповой закон, формулы сложения и<br/> удвоения точек, теорема Хассе о числе точек на эллиптической кривой || K, Гл. VI, пар. 1<br/> П, гл. 4 || <center>Капустин Егор</center> || <center>11.01.2022</center> || <center>✔</center> || <center>24.01.2022</center> ||
 
|-
 
|-
| 14 || Нахождение точки на эллиптической кривой. Задача дискретного логарифмирования. Криптосистемы на эллиптических кривых: аналоги систем Диффи-Хеллмана <br/>и Эль-Гамаля || K, Гл. VI, пар. 2 || <center>Верзаков Ефим</center> || <center>07.12.2021</center> || || <center>TBA</center> ||
+
| 14 || Нахождение точки на эллиптической кривой. Задача дискретного логарифмирования. Криптосистемы на эллиптических кривых: аналоги систем Диффи-Хеллмана <br/>и Эль-Гамаля || K, Гл. VI, пар. 2 || <center>Верзаков Ефим</center> || <center>11.01.2022</center> || <center>✔</center> || <center>24.01.2022</center> || <center>✔</center>
 
|-
 
|-
| 15 || Проверка чисел на простоту и разложение на множители при помощи<br/> эллиптических кривых. Аналог метода Поклингтона и метод Ленстры || K, Гл. VI, пар. 3-4 <br/>В, Гл. 4 || <center>Порохнин Даниил</center> || <center>TBA</center> || || <center>TBA</center> ||
+
| 15 || Проверка чисел на простоту и разложение на множители при помощи<br/> эллиптических кривых. Аналог метода Поклингтона и метод Ленстры || K, Гл. VI, пар. 3-4 <br/>В, Гл. 4 || <center>Порохнин Даниил</center> || <center>22.02.2022</center> || <center>✔</center> || <center>08.03.2022</center> ||
 
|-
 
|-
 
|}
 
|}
Строка 67: Строка 69:
 
! № !! Тема доклада !! Литература !! Отвечающий доклад !! Дата выступления || Отметка о выполнении || Дедлайн ДЗ || Отметка о проверке
 
! № !! Тема доклада !! Литература !! Отвечающий доклад !! Дата выступления || Отметка о выполнении || Дедлайн ДЗ || Отметка о проверке
 
|-
 
|-
| 1 || Основные понятия теории кодирования. Коды, исправляющие ошибки. Расстояние Хемминга и неравенство треугольника. [7,4,3]_2-код Хэмминга и его синдром || РРШ, раздел 1 <br/> КвЛ, разд. 7 <br/>ЛН || <center>Ломакин Павел</center> || <center>TBA</center> || || <center>TBA</center> ||
+
| 1 || Основные понятия теории кодирования. Коды, исправляющие ошибки. Расстояние Хемминга и неравенство треугольника. [7,4,3]_2-код Хэмминга и его синдром || РРШ, раздел 1 <br/> КвЛ, разд. 7 <br/>ЛН || <center>Ломакин Павел</center> || <center>25.01.2022</center> || <center>✔</center> || <center>08.02.2022</center> || <center>✔</center>
 
|-
 
|-
| 2 || Линейная алгебра над конечными полями: число прямых, число k-мерных<br/> подпространств и число невырожденных матриц в n-мерном пространстве над<br/> полем из q элементов. || - || <center>Ищенко Алексей</center> || <center>TBA</center> || || <center>TBA</center> ||
+
| 2 || Линейная алгебра над конечными полями: число прямых, число k-мерных<br/> подпространств и число невырожденных матриц в n-мерном пространстве над<br/> полем из q элементов. || - || <center>Ищенко Алексей</center> || <center>08.02.2022</center> || <center>✔</center> || <center>22.02.2022</center> ||
 
|-
 
|-
| 3 || Линейные коды и их характеристики. Порождающая и проверочная матрицы. <br/>Двойственный код и тождество Мак-Вильямса. Эквивалентность кодов.<br/> Методы вычисления минимального расстояния для подпространства  || РРШ, разд. 4 <br/>ЛН || <center>Адамян Эдвард</center> || <center>TBA</center> || || <center>TBA</center> ||
+
| 3 || Линейные коды и их характеристики. Порождающая и проверочная матрицы. <br/>Двойственный код и тождество Мак-Вильямса. Эквивалентность кодов.<br/> Методы вычисления минимального расстояния для подпространства  || РРШ, разд. 4 <br/>ЛН || <center>Адамян Эдвард</center> || <center>11.03.2022</center> || <center>✔</center> || <center>22.03.2022</center> ||
 
|-
 
|-
| 4 || Неравенство Синглтона. Граница Хэмминга и граница Гилберта. Оценка Плоткина || РРШ,_разд.2,7,15 <br/>ЛН, ВНЦ || <center>Дмитрин Платон</center> || <center>TBA</center> || || <center>TBA</center> ||
+
| 4 || Неравенство Синглтона. Граница Хэмминга и граница Гилберта. Оценка Плоткина || РРШ,_разд.2,7,15 <br/>ЛН, ВНЦ || <center>Дмитрин Платон</center> || <center>11.03.2022</center> || <center>✔</center> || <center>22.03.2022</center> ||
 
|-
 
|-
| 5 || Совершенные коды, их классификация. Обобщенные коды Хэмминга.<br/> Проверка совершенности || РРШ, разд. 6 <br/>ВНЦ || <center>Андрющенко Михаил</center> || <center>TBA</center> || || <center>TBA</center> ||
+
| 5 || Совершенные коды, их классификация. Обобщенные коды Хэмминга.<br/> Проверка совершенности || РРШ, разд. 6 <br/>ВНЦ || <center>Андрющенко Михаил</center> || <center>11.03.2022</center> || <center>✔</center> || <center>22.03.2022</center> ||
 
|-
 
|-
| 6 || CRC-коды  || - || <center>Камнев Петр</center> || <center>TBA</center> || || <center>TBA</center> ||
+
| 6 || CRC-коды  || - || <center>Камнев Петр</center> || <center>11.03.2022</center> || <center>✔</center> || <center>22.03.2022</center> ||
 
|-
 
|-
| 7 || Коды Рида-Соломона и их декодирование.  || РРШ, разд. 8-9 || <center>Алёнов Михаил</center> || <center>TBA</center> || || <center>TBA</center> ||
+
| 7 || Коды Рида-Соломона и их декодирование.  || РРШ, разд. 8-9 || <center>Алёнов Михаил</center> || <center>15.03.2022</center> || <center>✔</center> || <center>22.03.2022</center> ||
 
|-
 
|-
| 8 || Циклические коды и главные идеалы. Бинарный и тернарный коды Голея.<br/> Проверка совершенности  || КвЛ, раздел 8<br/> ЛН || <center>Савко Богдан</center> || <center>TBA</center> || || <center>TBA</center> ||
+
| 8 || Циклические коды и главные идеалы. Бинарный и тернарный коды Голея.<br/> Проверка совершенности  || КвЛ, раздел 8<br/> ЛН || <center>Савко Богдан</center> || <center>15.03.2022</center> || <center>✔</center> || <center>22.03.2022</center> ||
 
|-
 
|-
| 9 || БЧХ коды  || РРШ, разд. 20<br/> ЛН || <center>Халемский Никита</center> || <center>TBA</center> || || <center>TBA</center> ||
+
| 9 || БЧХ коды  || РРШ, разд. 20<br/> ЛН || <center>Халемский Никита</center> || <center>15.03.2022</center> || <center>✔</center> || <center>-</center> || <center>-</center>
 
|-
 
|-
| 10 || Коды Рида-Маллера || - || <center>Коннов Илья</center> || <center>TBA</center> || || <center>TBA</center> ||
+
| 10 || Коды Рида-Маллера || - || <center>Коннов Илья</center> || <center>15.03.2022</center> || <center>✔</center> || <center>22.03.2022</center> ||
 
|-
 
|-
| 11 ||  Декодирование линейных кодов. Синдромы. Алгоритм декодирования по лидеру смежного класса || ЛН || <center>Турсунов Темирлан</center> || <center>TBA</center> || || <center>TBA</center> ||
+
| 11 ||  Декодирование линейных кодов. Синдромы. Алгоритм декодирования по лидеру смежного класса || ЛН || <center>Турсунов Темирлан</center> || <center>-</center> || <center>-</center> || <center>-</center> || <center>-</center>
 
|-
 
|-
| 12 || Линейные рекуррентные последовательности и их свойства || ЛН || <center>Щербаков Ярослав</center> || <center>TBA</center> || || <center>TBA</center> ||
+
| 12 || Линейные рекуррентные последовательности и их свойства || ЛН || <center>Щербаков Ярослав</center> || <center>-</center> || <center>-</center> || <center>-</center> || <center>-</center>
 
|-
 
|-
| 13 || Конечные геометрии и системы Штейнера || ЛН || <center>Егоров Михаил</center> || <center>TBA</center> || || <center>TBA</center> ||
+
| 13 || Конечные геометрии и системы Штейнера || ЛН || <center>Егоров Михаил</center> || <center>15.03.2022</center> || <center>✔</center> || <center>22.03.2022</center> ||
 
|-
 
|-
 
|}
 
|}

Текущая версия на 15:24, 19 марта 2022

О семинаре

Цель семинара – познакомить участников с основными понятиями, методами и алгоритмами криптографии и теории кодирования. Параллельно мы обсуждаем необходимые сведения из алгебры, теории чисел и дискретной математики. Семинар проходит в форме докладов участников с их последующим обсуждением. Участие в семинаре позволит освоить современные методы защиты и передачи информации. Также будут даны многочисленные примеры практического использования материала, излагаемого в базовых математических курсах.

Семинар проводится для студентов 2 курса в 1-3 модулях.

Преподаватель

Аржанцев Иван Владимирович, arjantsev@hse.ru

Учебные ассистенты

Минец Максим, mvminets@edu.hse.ru

Сурова София, svsurova@edu.hse.ru

Полезные ссылки

Таблица с оценками

Классрум для сдачи домашних заданий

Программа экзамена

План семинара

Криптография

Тема доклада Литература Отвечающий доклад Дата выступления Отметка о выполнении Дедлайн ДЗ Отметка о проверке
1 Простейшие криптосистемы. Сдвиг и аффинное преобразование.
Частотный анализ. Биграммы. Ключ шифрования и ключ дешифрования.
Классические криптосистемы и системы с открытым ключом
К, Гл. III, пар. 1
К, Гл. IV, пар. 1
Кунин Илья
21.09.2021
05.10.2021
2 Необходимые факты из теории чисел: обратимость вычета по данному модулю,
алгоритм нахождения обратного элемента, малая теорема Ферма,
функция Эйлера и теорема Эйлера, китайская теорема об остатках,
возведение в степень методом повторного возведения в квадрат
K, Гл. I
Красковский Дмитрий
05.10.2021
21.10.2021
3 Строение конечных полей ЛН
-
-
-
-
-
4 Квадратичные вычеты и закон взаимности K, Гл. II, пар. 2
Зобнин Алексей
05.10.2021
21.10.2021
5 Необходимые сведения из алгебры: группы и подгруппы, примеры конечных групп,
порядок элемента, циклические группы и их порождающие
любой учебник по алгебре
Неймышева Юлия
26.10.2021
09.11.2021
6 Криптосистема RSA K, Гл. IV, пар. 2
П, 1.2
Куликов Богдан
26.10.2021
09.11.2021
7 Задача дискретного логарифмирования и основанные на ней криптосистемы:
система Диффи-Хеллмана обмена ключами, системы Мэсси-Омура и Эль-Гамаля. Понятие электронной подписи. Электронная подпись в RSA и по Эль-Гамалю
K, Гл. IV, пар. 1, 3
П, 1.3
В, Гл. 5
Каменский Андрей
09.11.2021
10.01.2022
8 Проверка чисел на простоту и задача факторизации. Решето Эратосфена. Псевдопростые числа и числа Кармайкла. Метод Поклингтона.
(p-1)-метод Полларда.
K, Гл. V
П, 2.4
В, Гл. 1-2
Абаев Фёдор
09.11.2021
23.11.2021
9 Задача о рюкзаке как задача комбинаторной оптимизации.
Быстрорастущие наборы. Рюкзачная криптосистема
K, Гл. IV, пар. 4
Ломакин Павел
08.02.2022
22.02.2022
10 Протоколы с нулевым разглашением. Три примера: раскраска карты в три цвета,
поиск гамильтонова пути и извлечение корня в кольце вычетов
K, Гл. IV, пар. 5
Гайсин Ислам
09.11.2021
-
-
11 Математика разделенного секрета. Пороговые (n,k)-схемы доступа.
Схема Шамира и схема Блэкли. Связь с теорией матроидов
Я, Гл. 5
Коннов Илья
23.11.2021
10.01.2022
12 Криптосистема Рабина. McEliece -
Егоров Михаил
11.01.2022
24.01.2022
13 Математика эллиптических кривых: групповой закон, формулы сложения и
удвоения точек, теорема Хассе о числе точек на эллиптической кривой
K, Гл. VI, пар. 1
П, гл. 4
Капустин Егор
11.01.2022
24.01.2022
14 Нахождение точки на эллиптической кривой. Задача дискретного логарифмирования. Криптосистемы на эллиптических кривых: аналоги систем Диффи-Хеллмана
и Эль-Гамаля
K, Гл. VI, пар. 2
Верзаков Ефим
11.01.2022
24.01.2022
15 Проверка чисел на простоту и разложение на множители при помощи
эллиптических кривых. Аналог метода Поклингтона и метод Ленстры
K, Гл. VI, пар. 3-4
В, Гл. 4
Порохнин Даниил
22.02.2022
08.03.2022

Теория кодирования

Тема доклада Литература Отвечающий доклад Дата выступления Отметка о выполнении Дедлайн ДЗ Отметка о проверке
1 Основные понятия теории кодирования. Коды, исправляющие ошибки. Расстояние Хемминга и неравенство треугольника. [7,4,3]_2-код Хэмминга и его синдром РРШ, раздел 1
КвЛ, разд. 7
ЛН
Ломакин Павел
25.01.2022
08.02.2022
2 Линейная алгебра над конечными полями: число прямых, число k-мерных
подпространств и число невырожденных матриц в n-мерном пространстве над
полем из q элементов.
-
Ищенко Алексей
08.02.2022
22.02.2022
3 Линейные коды и их характеристики. Порождающая и проверочная матрицы.
Двойственный код и тождество Мак-Вильямса. Эквивалентность кодов.
Методы вычисления минимального расстояния для подпространства
РРШ, разд. 4
ЛН
Адамян Эдвард
11.03.2022
22.03.2022
4 Неравенство Синглтона. Граница Хэмминга и граница Гилберта. Оценка Плоткина РРШ,_разд.2,7,15
ЛН, ВНЦ
Дмитрин Платон
11.03.2022
22.03.2022
5 Совершенные коды, их классификация. Обобщенные коды Хэмминга.
Проверка совершенности
РРШ, разд. 6
ВНЦ
Андрющенко Михаил
11.03.2022
22.03.2022
6 CRC-коды -
Камнев Петр
11.03.2022
22.03.2022
7 Коды Рида-Соломона и их декодирование. РРШ, разд. 8-9
Алёнов Михаил
15.03.2022
22.03.2022
8 Циклические коды и главные идеалы. Бинарный и тернарный коды Голея.
Проверка совершенности
КвЛ, раздел 8
ЛН
Савко Богдан
15.03.2022
22.03.2022
9 БЧХ коды РРШ, разд. 20
ЛН
Халемский Никита
15.03.2022
-
-
10 Коды Рида-Маллера -
Коннов Илья
15.03.2022
22.03.2022
11 Декодирование линейных кодов. Синдромы. Алгоритм декодирования по лидеру смежного класса ЛН
Турсунов Темирлан
-
-
-
-
12 Линейные рекуррентные последовательности и их свойства ЛН
Щербаков Ярослав
-
-
-
-
13 Конечные геометрии и системы Штейнера ЛН
Егоров Михаил
15.03.2022
22.03.2022

Литература

[В] - О.Н.Василенко. Теоретико-числовые алгоритмы в криптографии. М.: МЦНМО, 2003, 325 стр.

[К] - Н.Коблиц. Курс теории чисел и криптографии. М.: ТВП, 2001, 254 стр.

[ЛН] - Р.Лидл и Г.Нидеррайтер. Конечные поля. М.: Мир, 1988

[П] - Ю.Г.Прохоров. Эллиптические кривые и криптография. Семестр 1. М.: МГУ, 2007. 143 стр.

[Я] - Введение в криптографию. Под редакцией В.В.Ященко. М.: МЦНМО, 2012, 352 стр.

[ВНЦ] - С.Г.Влэдуц, Д.Ю.Ногин и М.А.Цфасман. Алгеброгеометрические коды. М.: МЦНМО, 2003

[КвЛ] - П.Камерон и Дж.ван Линт. Теория графов, теория кодирования и блок-схемы. М.: Наука, 1980

[РРШ] - А.Ромащенко, А.Румянцев и А.Шень. Заметки по теории кодирования. М.: МЦНМО, 2011

Оценивание

Участие в семинаре без доклада

K = 0,2 КП + 0,3 АУ + 0,5 ИК

КП - контроль посещаемости

АУ - активность участника (домашние задания)

ИК - итоговый контроль в конце 3-го модуля в виде устного экзамена по криптографии и теории кодирования


Участие в семинаре с одним докладом по одной из частей семинара (или по криптографии, или по теории кодирования)

K = 0,2 КП + 0,2 АУ + 0,3 ДП + 0,3 ИК

КП - контроль посещаемости

АУ - активность участника (домашние задания)

ДП - доклад с презентацией по одной из тем семинара

ИК - итоговый контроль в конце 3-го муделя в виде устного экзамена по темам той части семинара, по которой не было доклада


Участие в семинаре с двумя докладами по обеим частям семинара (и по криптографии, и по теории кодирования)

K = 0,2 КП + 0,2 АУ + 0,3 ДП1 + 0,3 ДП2

КП - контроль посещаемости

АУ - активность участника (домашние задания)

ДП1 - доклад с презентацией по одной из тем из криптографии

ДП2 - доклад с презентацией по одной из тем из теории кодирования

Контакты

Если вы нашли ошибку, то напишите мне - svsurova@edu.hse.ru, Сурова София