Algebra DSBA 2018/2019 — различия между версиями
Danlark (обсуждение | вклад) |
Mednik (обсуждение | вклад) (→Exam) |
||
(не показано 37 промежуточных версии 4 участников) | |||
Строка 8: | Строка 8: | ||
|- | |- | ||
|| Teacher || [http://www.hse.ru/staff/arjanstev Ivan Arzhantsev] || [http://www.hse.ru/org/persons/112929840 Roman Avdeev] || [https://www.hse.ru/org/persons/209813351 Nikita Medved] | || Teacher || [http://www.hse.ru/staff/arjanstev Ivan Arzhantsev] || [http://www.hse.ru/org/persons/112929840 Roman Avdeev] || [https://www.hse.ru/org/persons/209813351 Nikita Medved] | ||
+ | mednik at mccme.ru | ||
|- | |- | ||
− | || Assistant || [https://t.me/Danlark Danila Kutenin] || Maksim Siplivyj || [https://t.me/isadrtdinov Ildus Sadrtdinov] | + | || Assistant || [https://t.me/Danlark Danila Kutenin] kutdanila at yandex.ru || [https://t.me/max_the_human Maksim Siplivyj] maxsev1999@yandex.ru || [https://t.me/isadrtdinov Ildus Sadrtdinov] |
irsadrtdinov@edu.hse.ru | irsadrtdinov@edu.hse.ru | ||
|} | |} | ||
Строка 23: | Строка 24: | ||
| <center>2</center> || Roman Avdeev || 15:40–17:40, room 623 || || || 15:40–16:30, 18:10–19:00, room 623 || | | <center>2</center> || Roman Avdeev || 15:40–17:40, room 623 || || || 15:40–16:30, 18:10–19:00, room 623 || | ||
|- | |- | ||
− | | <center>3</center> || Nikita Medved || || || || || | + | | <center>3</center> || Nikita Medved || 16:40–18:00, room 623 || || || || 18:10 (if you write me beforehand) |
|- | |- | ||
− | | <center>4</center> || Danila Kutenin || || || || || | + | | <center>4</center> || Danila Kutenin || || || 12:00-13:00, room (each time telegram announcement) || || |
|- | |- | ||
− | | <center>5</center> || Maksim Siplivyj || || || || || | + | | <center>5</center> || Maksim Siplivyj || 16:40–18:00 || || || || |
|- | |- | ||
− | | <center>6</center> || Ildus Sadrtdinov || | + | | <center>6</center> || Ildus Sadrtdinov || 16:40–18:00 || || || || |
|} | |} | ||
Строка 49: | Строка 50: | ||
= Lecture abstracts = | = Lecture abstracts = | ||
+ | |||
+ | [https://www.dropbox.com/s/ax7c0kae15r84rh/Algebra_Lecture_eng_01-1.pdf?dl=0 '''Lecture 1'''] (2.04.2019). Semigroups and groups: definitions and examples. Permutation groups and matrix groups. Subgroups. The order of an element and cyclic subgroups. | ||
+ | |||
+ | [https://www.dropbox.com/s/xjix49iifop4a28/Algebra_Lecture_eng_02-1.pdf?dl=0 '''Lecture 2'''] (9.04.2019). Lagrange's theorem and its corollaries. Normal subgroups. Homomorphisms and isomorphisms. A classification of cyclic groups. Factor groups and the Homomorphism theorem. | ||
+ | |||
+ | [https://www.dropbox.com/s/g5fvh96yw02tlmp/Algebra_Lecture_eng_03.pdf?dl=0 '''Lecture 3'''] (16.04.2019). The homomorphism theorem. The center and direct products of groups. Theorem on factorization of direct products and factorization of finite cyclic groups. | ||
+ | |||
+ | [https://www.dropbox.com/s/n620xut0se9jq7w/Algebra_Lecture_eng_04-1.pdf?dl=0 '''Lecture 4'''] (23.04.2019). Free abelian groups and their subgroups. Stacked bases. An algorithm for transforming an integer matrix to a diagonal form. Classification of finite abelian groups. The exponent of a finite abelian group. | ||
+ | |||
+ | [https://www.dropbox.com/s/aitc537s8d3iu9q/Algebra_Lecture_eng_05.pdf?dl=0 '''Lecture 5'''] (30.04.2019). Actions of a group on a set. Orbits and stabilizers. Transitive actions and free actions. Three actions of a group on itself. Conjugacy classes. Cayley's Theorem. | ||
+ | |||
+ | [https://www.dropbox.com/s/c6al6pjqlwc2khf/Algebra_Lecture_eng_06.pdf?dl=0 '''Lecture 6'''] (14.05.2019). Rings and fields. Zero divisors, invertible elements, nilpotents and idempotents. Ideals. Principal ideals. Factor rings and the Homomorphism Theorem. | ||
+ | |||
+ | [https://www.dropbox.com/s/123m2tv2xcg49kp/Algebra_Lecture_eng_07.pdf?dl=0 '''Lecture 7'''] (21.05.2019). Polynomials in several variables. Symmetric polynomials. The lexicographic order. Elementary symmetric polynomials. The main theorem on symmetric polynomials. Vieta's formulas. The discriminant. | ||
+ | |||
+ | [https://www.dropbox.com/s/cf5w1kgty44o7n5/Algebra_Lecture_eng_08.pdf?dl=0 '''Lecture 8'''] (28.05.2019). Polynomials in one variable over a field. Greatest common divisor. Irreducible polynomials. Unique factorization property. Description of ideals. Properties of factor rings. | ||
+ | |||
+ | [https://www.dropbox.com/s/uwux32beiozbfjo/Algebra_Lecture_eng_09.pdf?dl=0 '''Lecture 9'''] (04.06.2019). The characteristic of a field. Extensions of fields. Finite extensions and their degrees. Algebraic and transcendental elements. The minimal polynomial of an algebraic element. | ||
+ | |||
+ | [https://www.dropbox.com/s/a3mtcsp8s25j0nq/Algebra_Lecture_eng_10.pdf?dl=0 '''Lecture 10'''] (11.06.2019). Decomposition of a polynomial into linear factors. Finite fields. Cyclicity of the multiplicative group. Irreducible polynomials over the field $\ZZ_p$. The field with four elements. | ||
= Problem sheets = | = Problem sheets = | ||
The Nth problem sheet contains the Nth homework. | The Nth problem sheet contains the Nth homework. | ||
+ | |||
+ | [https://www.dropbox.com/s/93uq6ihw4t5xop5/Problems_eng_01.pdf?dl=0 '''Problems to lecture 1'''] | ||
+ | |||
+ | [https://www.dropbox.com/s/fex798mxupgxyby/Problems_eng_02_1.pdf?dl=0 '''Problems to lecture 2'''] | ||
+ | |||
+ | [https://www.dropbox.com/s/25u9hn96pt1ezax/Problems_eng_03.pdf?dl=0 '''Problems to lecture 3'''] | ||
+ | |||
+ | [https://www.dropbox.com/s/rfuupcfxgzcttr4/Problems_eng_04.pdf?dl=0 '''Problems to lecture 4'''] | ||
+ | |||
+ | [https://www.dropbox.com/s/ro0sbiwgbptguji/Problems_eng_05-1.pdf?dl=0 '''Problems to lecture 5'''] | ||
+ | |||
+ | [https://www.dropbox.com/s/gvox9oq4k94o0tk/Problems_eng_06.pdf?dl=0 '''Problems to lecture 6'''] | ||
+ | |||
+ | [https://www.dropbox.com/s/cft332ima9759p8/Problems_eng_07.pdf?dl=0 '''Problems to lecture 7'''] | ||
+ | |||
+ | [https://www.dropbox.com/s/dvuql9acixalxm7/Problems_eng_08.pdf?dl=0 '''Problems to lecture 8'''] | ||
+ | |||
+ | [https://www.dropbox.com/s/fn7apzai8bk6ufq/Problems_eng_09.pdf?dl=0 '''Problems to lecture 9'''] | ||
= Written test = | = Written test = | ||
+ | The test has been on Tuesday 11.06.2019, 16:40-19:30. You could use any printed or handwritten notes, a non-programmable calculator. | ||
+ | |||
+ | [https://www.dropbox.com/s/2fpe9hxt0h6k9vl/Control_Work_Algebra-eng.pdf?dl=0 Problems from the test] | ||
= Exam = | = Exam = | ||
The exam will be oral. | The exam will be oral. | ||
+ | |||
+ | [https://www.dropbox.com/s/6tbncgwiffz5yw4/Programme.doc?dl=0 List of topics] | ||
= Results = | = Results = | ||
+ | |||
+ | {| class="wikitable" style="text-align:center" | ||
+ | |- | ||
+ | ! [https://docs.google.com/spreadsheets/d/1lUYGBlpX1ep2iLw84uBX-IqSfvsOmEZ-DX2x7-Hm9lA/edit#gid=2070166471 181] !! [https://docs.google.com/spreadsheets/d/1lUYGBlpX1ep2iLw84uBX-IqSfvsOmEZ-DX2x7-Hm9lA/edit#gid=564758468 182] !! [https://docs.google.com/spreadsheets/d/1lUYGBlpX1ep2iLw84uBX-IqSfvsOmEZ-DX2x7-Hm9lA/edit#gid=1698875578 183] | ||
+ | |} | ||
= Reading list = | = Reading list = |
Текущая версия на 18:48, 16 июня 2019
Содержание
Teachers and assistants
Группа | 181 | 182 | 183 |
---|---|---|---|
Lecturer | Ivan Arzhantsev | ||
Teacher | Ivan Arzhantsev | Roman Avdeev | Nikita Medved
mednik at mccme.ru |
Assistant | Danila Kutenin kutdanila at yandex.ru | Maksim Siplivyj maxsev1999@yandex.ru | Ildus Sadrtdinov
irsadrtdinov@edu.hse.ru |
Consultations schedule
Teacher/Assistant | Monday | Tuesday | Wednesday | Thursday | Friday | |
---|---|---|---|---|---|---|
|
Ivan Arzhantsev | 17:00–18:30, room 603 | ||||
|
Roman Avdeev | 15:40–17:40, room 623 | 15:40–16:30, 18:10–19:00, room 623 | |||
|
Nikita Medved | 16:40–18:00, room 623 | 18:10 (if you write me beforehand) | |||
|
Danila Kutenin | 12:00-13:00, room (each time telegram announcement) | ||||
|
Maksim Siplivyj | 16:40–18:00 | ||||
|
Ildus Sadrtdinov | 16:40–18:00 |
Grading system
The cumulative grade is computed as follows:
C = 0,6 * H + 0,4 * T,
where H is the grade for the home assignments and T is the written test grade.
The final course grade is given by
F = 0,5 * C + 0,5 * E
where E is the final exam grade.
Grades in all formulas are rounded according to the standard rule.
Lecture abstracts
Lecture 1 (2.04.2019). Semigroups and groups: definitions and examples. Permutation groups and matrix groups. Subgroups. The order of an element and cyclic subgroups.
Lecture 2 (9.04.2019). Lagrange's theorem and its corollaries. Normal subgroups. Homomorphisms and isomorphisms. A classification of cyclic groups. Factor groups and the Homomorphism theorem.
Lecture 3 (16.04.2019). The homomorphism theorem. The center and direct products of groups. Theorem on factorization of direct products and factorization of finite cyclic groups.
Lecture 4 (23.04.2019). Free abelian groups and their subgroups. Stacked bases. An algorithm for transforming an integer matrix to a diagonal form. Classification of finite abelian groups. The exponent of a finite abelian group.
Lecture 5 (30.04.2019). Actions of a group on a set. Orbits and stabilizers. Transitive actions and free actions. Three actions of a group on itself. Conjugacy classes. Cayley's Theorem.
Lecture 6 (14.05.2019). Rings and fields. Zero divisors, invertible elements, nilpotents and idempotents. Ideals. Principal ideals. Factor rings and the Homomorphism Theorem.
Lecture 7 (21.05.2019). Polynomials in several variables. Symmetric polynomials. The lexicographic order. Elementary symmetric polynomials. The main theorem on symmetric polynomials. Vieta's formulas. The discriminant.
Lecture 8 (28.05.2019). Polynomials in one variable over a field. Greatest common divisor. Irreducible polynomials. Unique factorization property. Description of ideals. Properties of factor rings.
Lecture 9 (04.06.2019). The characteristic of a field. Extensions of fields. Finite extensions and their degrees. Algebraic and transcendental elements. The minimal polynomial of an algebraic element.
Lecture 10 (11.06.2019). Decomposition of a polynomial into linear factors. Finite fields. Cyclicity of the multiplicative group. Irreducible polynomials over the field $\ZZ_p$. The field with four elements.
Problem sheets
The Nth problem sheet contains the Nth homework.
Written test
The test has been on Tuesday 11.06.2019, 16:40-19:30. You could use any printed or handwritten notes, a non-programmable calculator.
Exam
The exam will be oral.
Results
181 | 182 | 183 |
---|
Reading list
Required
- Э.Б.Винберг. Курс алгебры. М.: МЦНМО, 2014 (English transl.: Ernest Vinberg. A Course in Algebra. Graduate Studies in Math. 56, Amer. Math. Soc., 2003)
- Сборник задач по алгебре под редакцией А.И.Кострикина. Новое издание. М.: МЦНМО, 2015 (English transl.: Exercises in Algebra. Edited by A. Kostrikin, CRC Press, 1996)
Optional
Serge Lang. Algebra. Revised Third Edition. Graduate Texts in Math. 211, Springer, 2002