Анализ статистической информации финансовых рынков с использованием алгоритмов машинного обучения и нечеткой логики (командный проект) — различия между версиями

Материал из Wiki - Факультет компьютерных наук
Перейти к: навигация, поиск
(Критерии оценки)
 
(не показано 8 промежуточных версии ещё одного участника)
Строка 6: Строка 6:
 
|number_of_students=3-4
 
|number_of_students=3-4
 
|categorize=yes
 
|categorize=yes
 +
|is_archived=yes
 
}}
 
}}
  
 
=== Что это за проект? ===
 
=== Что это за проект? ===
 
В рамках данного проекта предлагается разработать рабочий прототип системы для проведения индикативного статитистического и качественного анализа для поиска эффективных инвестиций и прогнозирования. Программа должна получать на вход:  
 
В рамках данного проекта предлагается разработать рабочий прототип системы для проведения индикативного статитистического и качественного анализа для поиска эффективных инвестиций и прогнозирования. Программа должна получать на вход:  
- историю финансовых котировок (из файлов или внешних источников)  
+
- историю финансовых котировок (из файлов или внешних источников) <br />
- Формализованную текстовую информацию (Лента новостей)
+
 
 +
- Формализованную текстовую информацию (Лента новостей)<br />
  
 
Для статистической обработки рассчитывать выбранные показатели для каждого из активов, например:
 
Для статистической обработки рассчитывать выбранные показатели для каждого из активов, например:
  
-Расчет волатильности цены финансового актива по методу GARCH
+
-Расчет волатильности цены финансового актива по методу GARCH<br />
-Выбрав Benchmark index оценить линейную регрессию (Расчет показателя alfa и beta по заданному индикатору)
+
 
-Расчет соотношений для оценки эффективности финансовых продуктов (Treynor, Sharp, Alfa, Track Error ratios)
+
-Выбрав Benchmark index оценить линейную регрессию (Расчет показателя alfa и beta по заданному индикатору)<br />
 +
 
 +
-Расчет соотношений для оценки эффективности финансовых продуктов (Treynor, Sharp, Alfa, Track Error ratios)<br />
 +
 
  
 
Используя текстовую информацию (лента новостей) и мнение эксперта система должна иметь функциональность формировать базу знаний нечетких правил для принятия решений о выборе финансового актива для инвестиций.
 
Используя текстовую информацию (лента новостей) и мнение эксперта система должна иметь функциональность формировать базу знаний нечетких правил для принятия решений о выборе финансового актива для инвестиций.
Строка 24: Строка 29:
  
 
=== Чему научатся студенты? Что самое интересное в проекте? ===
 
=== Чему научатся студенты? Что самое интересное в проекте? ===
-Формулировать постановку задачи
+
-Формулировать постановку задачи<br />
-Писать надежный и понятный код
+
 
-Получите базовые знания работы на глобальных финансовых рынках
+
-Писать надежный и понятный код<br />
-Научитесь проводить количественный анализ финансовых активов (Quantification Analysis of Financial Market)
+
 
-Применять алгоритмы машинного обучения и нечеткой логики для статистической обработки финансовой информации
+
-Получите базовые знания работы на глобальных финансовых рынках<br />
 +
 
 +
-Научитесь проводить количественный анализ финансовых активов (Quantification Analysis of Financial Market)<br />
 +
 
 +
-Применять алгоритмы машинного обучения и нечеткой логики для статистической обработки финансовой информации<br />
  
 
=== Организация работы (Как студенты будут работать в команде?) ===
 
=== Организация работы (Как студенты будут работать в команде?) ===
Планируется проектная комманда от 3 до 4 человек. В рамках проектной комманды планируются следующие роли участников:
+
Планируется проектная комманда от 3 до 4 человек. В рамках проектной комманды планируются следующие роли участников:<br />
-Архитектор решения/Аналитик
+
 
-Разработчик
+
-Архитектор решения/Аналитик<br />
-Тестировщик/постановщик задачи
+
 
 +
-Разработчик<br />
 +
 
 +
-Тестировщик/постановщик задачи<br />
 +
 
  
 
В рамках проектной работы предполагается использовать Agile подход к организации работ. В рамках вводных занятий будет проведен инструктаж по распределению обязанностей и планирования работ.
 
В рамках проектной работы предполагается использовать Agile подход к организации работ. В рамках вводных занятий будет проведен инструктаж по распределению обязанностей и планирования работ.
  
 
=== Компоненты (Из каких частей состоит проект?) ===
 
=== Компоненты (Из каких частей состоит проект?) ===
1. Инициация проекта и планирование
+
1. Инициация проекта и планирование<br />
2. Формирование архитектуры будущего решения и проектирование
+
 
3. Разработка модулей системы согласно ТЗ
+
2. Формирование архитектуры будущего решения и проектирование<br />
4. Интеграционное тестирование полученного решения
+
 
5. Функциональное и пользовательское тестирование полученного решения
+
3. Разработка модулей системы согласно ТЗ<br />
6. Документирование и закрытие проекта
+
 
 +
4. Интеграционное тестирование полученного решения<br />
 +
 
 +
5. Функциональное и пользовательское тестирование полученного решения<br />
 +
 
 +
6. Документирование и закрытие проекта<br />
  
 
=== Какие будут использоваться технологии? ===
 
=== Какие будут использоваться технологии? ===
- C++ / Python в рамках прослушанного курса
+
- C++ / Python в рамках прослушанного курса<br />
- R Language (+ библиотеки)
+
 
- MOEX рыночные данные
+
- R Language (+ библиотеки)<br />
- Yahoo Finance, NASDAQ, NYMEX, CBOT...
+
 
- Google Finance
+
- MOEX рыночные данные<br />
- Реляционные базы данных (MS SQL, PostgreSQL, Sybase)
+
 
 +
- Yahoo Finance, NASDAQ, NYMEX, CBOT...<br />
 +
 
 +
- Google Finance<br />
 +
 
 +
- Реляционные базы данных (MS SQL, PostgreSQL, Sybase)<br />
  
 
=== Какие начальные требования? ===
 
=== Какие начальные требования? ===
Строка 58: Строка 81:
  
 
=== Темы вводных занятий ===
 
=== Темы вводных занятий ===
- Основы управления проектами и работа в комманде (основные подходы: Agile vs. Waterfall, Scope Management, Project documentation, Project Planning, Project Design etc)
+
- Основы управления проектами и работа в комманде (основные подходы: Agile vs. Waterfall, Scope Management, Project documentation, Project Planning, Project Design etc)<br />
- Основы финансовой математики и финансовых рынков
+
 
- Статистическая обработка рыночной информации
+
- Основы финансовой математики и финансовых рынков<br />
- Основы теории нейронных сетей (Модель Маккалока-Пиитса, Персептрон Розенблатта, Многослойная нейронная сеть, Алгоритм обучения многослойной нейронной сети методом обратного распространения ошибки)
+
 
- Основы теории нечеткой логики (Fuzzy Logic)
+
- Статистическая обработка рыночной информации<br />
- Основы проведения презентации
+
 
 +
- Основы теории нейронных сетей (Модель Маккалока-Пиитса, Персептрон Розенблатта, Многослойная нейронная сеть, Алгоритм обучения многослойной нейронной сети методом обратного распространения ошибки)<br />
 +
 
 +
- Основы теории нечеткой логики (Fuzzy Logic)<br />
 +
 
 +
- Основы проведения презентации<br />
  
 
=== Критерии оценки ===
 
=== Критерии оценки ===
4-5: Участие в проектных семинарах, подготовка прототипа и необходимой документации согласно выбранной задаче <br />
+
4-5: Участие в проектных семинарах, подготовка прототипа и необходимой документации согласно выбранной задаче;<br />
6-7: Проведение расширенного тестирования своей задачи (на основе подготовленных экспериментальных данных) и участие в кросс-тестировании модулей других участников проектной команды<br />
+
6-7: Проведение расширенного тестирования своей задачи (на основе подготовленных экспериментальных данных) и участие в кросс-тестировании модулей других участников проектной команды;<br />
8-10: Подготовка расширенного описания своей задачи в виде полного комплекта проектной документации.
+
8-10: Подготовка расширенного описания своей задачи в виде предлагаемого комплекта проектной документации (Бизнес требования - BRD; Техническое задание - FSD; Документация по программе).
  
 
=== Похожие проекты ===
 
=== Похожие проекты ===

Текущая версия на 13:01, 8 октября 2017

Компания Open TRM (Open Trade and Risk Management)
Учебный семестр Осень 2016
Учебный курс 3-й курс
Максимальное количество студентов, выбравших проект: 3-4


Внимание! Данный проект находится в архиве и реализован не будет.

Что это за проект?

В рамках данного проекта предлагается разработать рабочий прототип системы для проведения индикативного статитистического и качественного анализа для поиска эффективных инвестиций и прогнозирования. Программа должна получать на вход: - историю финансовых котировок (из файлов или внешних источников)

- Формализованную текстовую информацию (Лента новостей)

Для статистической обработки рассчитывать выбранные показатели для каждого из активов, например:

-Расчет волатильности цены финансового актива по методу GARCH

-Выбрав Benchmark index оценить линейную регрессию (Расчет показателя alfa и beta по заданному индикатору)

-Расчет соотношений для оценки эффективности финансовых продуктов (Treynor, Sharp, Alfa, Track Error ratios)


Используя текстовую информацию (лента новостей) и мнение эксперта система должна иметь функциональность формировать базу знаний нечетких правил для принятия решений о выборе финансового актива для инвестиций.

Система должна иметь возможность проверки адекватности модели и выбранных правил на основе ретроспективных рыночных и текстовых данных (Backtesting).

Чему научатся студенты? Что самое интересное в проекте?

-Формулировать постановку задачи

-Писать надежный и понятный код

-Получите базовые знания работы на глобальных финансовых рынках

-Научитесь проводить количественный анализ финансовых активов (Quantification Analysis of Financial Market)

-Применять алгоритмы машинного обучения и нечеткой логики для статистической обработки финансовой информации

Организация работы (Как студенты будут работать в команде?)

Планируется проектная комманда от 3 до 4 человек. В рамках проектной комманды планируются следующие роли участников:

-Архитектор решения/Аналитик

-Разработчик

-Тестировщик/постановщик задачи


В рамках проектной работы предполагается использовать Agile подход к организации работ. В рамках вводных занятий будет проведен инструктаж по распределению обязанностей и планирования работ.

Компоненты (Из каких частей состоит проект?)

1. Инициация проекта и планирование

2. Формирование архитектуры будущего решения и проектирование

3. Разработка модулей системы согласно ТЗ

4. Интеграционное тестирование полученного решения

5. Функциональное и пользовательское тестирование полученного решения

6. Документирование и закрытие проекта

Какие будут использоваться технологии?

- C++ / Python в рамках прослушанного курса

- R Language (+ библиотеки)

- MOEX рыночные данные

- Yahoo Finance, NASDAQ, NYMEX, CBOT...

- Google Finance

- Реляционные базы данных (MS SQL, PostgreSQL, Sybase)

Какие начальные требования?

-Программирование на C/C++/Python (в рамках прослушанного курса)

Темы вводных занятий

- Основы управления проектами и работа в комманде (основные подходы: Agile vs. Waterfall, Scope Management, Project documentation, Project Planning, Project Design etc)

- Основы финансовой математики и финансовых рынков

- Статистическая обработка рыночной информации

- Основы теории нейронных сетей (Модель Маккалока-Пиитса, Персептрон Розенблатта, Многослойная нейронная сеть, Алгоритм обучения многослойной нейронной сети методом обратного распространения ошибки)

- Основы теории нечеткой логики (Fuzzy Logic)

- Основы проведения презентации

Критерии оценки

4-5: Участие в проектных семинарах, подготовка прототипа и необходимой документации согласно выбранной задаче;
6-7: Проведение расширенного тестирования своей задачи (на основе подготовленных экспериментальных данных) и участие в кросс-тестировании модулей других участников проектной команды;
8-10: Подготовка расширенного описания своей задачи в виде предлагаемого комплекта проектной документации (Бизнес требования - BRD; Техническое задание - FSD; Документация по программе).

Похожие проекты

Контактная информация

E-mail: ivan.lisenkov@gmail.com

Телефон: +7(916)687-87-06