Minor da2016 gr3 — различия между версиями

Материал из Wiki - Факультет компьютерных наук
Перейти к: навигация, поиск
 
(не показаны 32 промежуточные версии этого же участника)
Строка 7: Строка 7:
 
При обращении по почте, начинайте тему письма со слов ''[Майнор ИАД 2016]''
 
При обращении по почте, начинайте тему письма со слов ''[Майнор ИАД 2016]''
  
'''Презентации лекций лежат [https://www.dropbox.com/sh/scqnaybiipg0ojw/AABdknK_tXnSTg41DQ-tfX1xa/lectures?dl=0 тут]'''<br/><br/>
+
''' [http://wiki.cs.hse.ru/%D0%9C%D0%B0%D0%B9%D0%BD%D0%BE%D1%80_%D0%98%D0%BD%D1%82%D0%B5%D0%BB%D0%BB%D0%B5%D0%BA%D1%82%D1%83%D0%B0%D0%BB%D1%8C%D0%BD%D1%8B%D0%B9_%D0%B0%D0%BD%D0%B0%D0%BB%D0%B8%D0%B7_%D0%B4%D0%B0%D0%BD%D0%BD%D1%8B%D1%85/%D0%92%D0%B2%D0%B5%D0%B4%D0%B5%D0%BD%D0%B8%D0%B5_%D0%B2_%D0%B0%D0%BD%D0%B0%D0%BB%D0%B8%D0%B7_%D0%B4%D0%B0%D0%BD%D0%BD%D1%8B%D1%85#.D0.9A.D0.BE.D0.BB.D0.BB.D0.BE.D0.BA.D0.B2.D0.B8.D1.83.D0.BC Страница] курса''' <br/>
'''Пройдите [https://docs.google.com/forms/d/1e_-EB5AOvE4zOgXVN-DGV67tUPxvO8m4B3IVYE4ZAxo/viewform?c=0&w=1 опрос!]'''<br/><br/>
+
'''[https://docs.google.com/document/d/1WRtQqhegOwV1l7McyJAm-y4ql65B_6dY3z5YkRgpe1k/edit Вопросы к экзамену]'''<br/>
'''Таблица с результатами''' содержится [https://drive.google.com/open?id=1Ab8RR942JAaoJyHpIcR7j9yIqgumyfReuMsHWd3Au8I здесь]<br/><br/>
+
'''Пройдите [https://docs.google.com/forms/d/1e_-EB5AOvE4zOgXVN-DGV67tUPxvO8m4B3IVYE4ZAxo/viewform?c=0&w=1 опрос!]'''<br/>
 +
'''Таблица с результатами''' содержится [https://drive.google.com/open?id=1Ab8RR942JAaoJyHpIcR7j9yIqgumyfReuMsHWd3Au8I здесь]<br/>
 
'''Анонимные''' комментарии, замечания и пожелания можно оставить [https://docs.google.com/forms/d/1JevHn2TS5KD83KLNbwbstDUgOjF7dZ8SaY0pLeRTTIw/viewform здесь]<br/>
 
'''Анонимные''' комментарии, замечания и пожелания можно оставить [https://docs.google.com/forms/d/1JevHn2TS5KD83KLNbwbstDUgOjF7dZ8SaY0pLeRTTIw/viewform здесь]<br/>
  
Строка 22: Строка 23:
 
'''8) 15 Марта 2016:''' Линейные методы классификации  - [http://nbviewer.jupyter.org/github/shestakoff/minor_da_16/blob/master/classification.ipynb IPython Notebook] <br/>
 
'''8) 15 Марта 2016:''' Линейные методы классификации  - [http://nbviewer.jupyter.org/github/shestakoff/minor_da_16/blob/master/classification.ipynb IPython Notebook] <br/>
 
'''9) 22 Марта 2016:''' + оценка качества, кросс-валидация  - [http://nbviewer.jupyter.org/github/shestakoff/minor_da_16/blob/master/classification_plus.ipynb IPython Notebook] <br/>
 
'''9) 22 Марта 2016:''' + оценка качества, кросс-валидация  - [http://nbviewer.jupyter.org/github/shestakoff/minor_da_16/blob/master/classification_plus.ipynb IPython Notebook] <br/>
 +
'''10) 5 Апреля 2016:''' Консультация перед коллоквиумом <br/>
 +
'''11) 19 Апреля 2016:''' Деревья решений - [http://nbviewer.jupyter.org/github/shestakoff/minor_da_16/blob/master/dec_trees.ipynb IPython Notebook] <br/>
 +
'''12) 26 Апреля 2016:''' Разбор одного проекта [http://nbviewer.jupyter.org/github/esokolov/ml-course-msu/blob/master/ML15-spring/contests/contest01-dota/contest01-dota-statement.ipynb IPython Notebook], [https://www.dropbox.com/s/fgojcww4nfvw8ik/features.csv?dl=0 Данные]<br/>
 +
'''13) 10 Мая 2016''' Ансамблевые методы. Методы понижения размерности данных [http://nbviewer.jupyter.org/github/shestakoff/minor_da_16/blob/master/ensembles_dim_reduction.ipynb IPython Notebook] <br/>
 +
'''14) 17 Мая 2016''' Работа в программе [http://orange.biolab.si/ Orange] [https://github.com/shestakoff/minor_da_16/blob/master/orange_sem_170516.ows Orange File]<br/>
 +
'''15) 24 Мая 2016''' Кластеризация [http://nbviewer.jupyter.org/github/shestakoff/minor_da_16/blob/master/clustering.ipynb IPython Notebook] <br/>
 +
'''16) 31 Мая 2016''' Метрические методы [http://nbviewer.jupyter.org/github/shestakoff/minor_da_16/blob/master/knn.ipynb IPython Notebook] [http://nbviewer.jupyter.org/github/shestakoff/minor_da_16/blob/master/knn_seminar_sol.ipynb Решение с семинара]  <br/>
 +
'''17) 7 Июня 2016''' Ассоциативные правила и частые множества признаков  <br/>
 +
'''17) 14 Июня 2016''' Презентации проектов  <br/>
 +
'''17) 21 Июня 2016''' Экзамен  <br/>
  
 
== Домашние Задания ==
 
== Домашние Задания ==
Строка 27: Строка 38:
 
[http://nbviewer.jupyter.org/github/shestakoff/minor_da_16/blob/master/hw2.ipynb ДЗ 2]. ''Срок - 20 февраля 2016'' <br/>
 
[http://nbviewer.jupyter.org/github/shestakoff/minor_da_16/blob/master/hw2.ipynb ДЗ 2]. ''Срок - 20 февраля 2016'' <br/>
 
[http://nbviewer.jupyter.org/github/shestakoff/minor_da_16/blob/master/hw3.ipynb ДЗ 3]. ''Срок - 4 марта 2016'' <br/>
 
[http://nbviewer.jupyter.org/github/shestakoff/minor_da_16/blob/master/hw3.ipynb ДЗ 3]. ''Срок - 4 марта 2016'' <br/>
 +
[http://nbviewer.jupyter.org/github/shestakoff/minor_da_16/blob/master/hw4_short.ipynb ДЗ 4]. ''Срок - 20 мая 2016'' <br/>
 +
[http://nbviewer.jupyter.org/github/shestakoff/minor_da_16/blob/master/hw5.ipynb ДЗ 5]. ''Срок - 8 июня 2016'' <br/>
  
 
== Проект ==
 
== Проект ==
Строка 35: Строка 48:
  
 
== Полезные ссылки (Будут пополняться) ==
 
== Полезные ссылки (Будут пополняться) ==
 +
''' Семинар 16'''
 +
 +
# [http://www.visiondummy.com/2014/04/curse-dimensionality-affect-classification/ Curse of Dimensionality]
 +
 +
''' Семинар 12'''
 +
 +
''Ensemble methods''
 +
# [https://en.wikipedia.org/wiki/Ensemble_learning Ensemble Learning Wikipedia]
 +
# [http://scikit-learn.org/stable/modules/ensemble.html Sklearn Ensemble Learning]
 +
# [http://www.cs.umd.edu/class/spring2006/cmsc726/Lectures/EnsembleMethods.pdf Bias-Variance and Ensemble Methods]
 +
 +
''Feature Selection\Dimention Reduction''
 +
# [http://research.microsoft.com/pubs/150728/FnT_dimensionReduction.pdf Dimention Reduction Overview]
 +
# [http://blog.datadive.net/selecting-good-features-part-i-univariate-selection/ Publication on Feature Selection ]
 +
 
''' Семинар 9 '''
 
''' Семинар 9 '''
 
# [https://ccrma.stanford.edu/workshops/mir2009/references/ROCintro.pdf ROC-Curve Introduction]
 
# [https://ccrma.stanford.edu/workshops/mir2009/references/ROCintro.pdf ROC-Curve Introduction]
Строка 48: Строка 76:
 
# [http://statsmodels.sourceforge.net/devel/examples/ Statmodels Examples]
 
# [http://statsmodels.sourceforge.net/devel/examples/ Statmodels Examples]
  
''' Семинар '''
+
''' Семинар 6'''
 
# [http://docs.scipy.org/doc/scipy/reference/stats.html SciPy Stats reference]  
 
# [http://docs.scipy.org/doc/scipy/reference/stats.html SciPy Stats reference]  
  
Строка 107: Строка 135:
 
# [https://www.kaggle.com/ Kaggle]
 
# [https://www.kaggle.com/ Kaggle]
 
# [http://archive.ics.uci.edu/ml/ UCI Repo]
 
# [http://archive.ics.uci.edu/ml/ UCI Repo]
 +
# [http://www.r2d3.us/visual-intro-to-machine-learning-part-1/ Visual Intro to ML]
  
 
''' Онлайн Курсы '''
 
''' Онлайн Курсы '''

Текущая версия на 23:36, 13 июня 2016

Майнор по Анализу Данных -- ИАД-3

На данной странице будут вывешиваться последние новости и материалы для семинарских занятий группы ИАД-3

Семинарист: Шестаков Андрей shestakoffandrey@gmail.com
При обращении по почте, начинайте тему письма со слов [Майнор ИАД 2016]

Страница курса
Вопросы к экзамену
Пройдите опрос!
Таблица с результатами содержится здесь
Анонимные комментарии, замечания и пожелания можно оставить здесь

Семинары

1) 12 Января 2016: Введение в Python, настройка среды программирования - IPython Notebook
2) 19 Января 2016: Исследование данных с помощью Pandas и Seaborn - IPython Notebook
3) 26 Января 2016: Элементы работы с матрицами. Меры расстояний и сходства - IPython Notebook
4) 2 Февраля 2016: Оптимизация функций. Символьные вычисления - IPython Notebook
5) 9 Февраля 2016: Вероятность и мат. статистика, ч. 1 - IPython Notebook
6) 16 Февраля 2016: Вероятность и мат. статистика, ч. 2 - IPython Notebook
7) 1 Марта 2016: Линейная регрессия - IPython Notebook
8) 15 Марта 2016: Линейные методы классификации - IPython Notebook
9) 22 Марта 2016: + оценка качества, кросс-валидация - IPython Notebook
10) 5 Апреля 2016: Консультация перед коллоквиумом
11) 19 Апреля 2016: Деревья решений - IPython Notebook
12) 26 Апреля 2016: Разбор одного проекта IPython Notebook, Данные
13) 10 Мая 2016 Ансамблевые методы. Методы понижения размерности данных IPython Notebook
14) 17 Мая 2016 Работа в программе Orange Orange File
15) 24 Мая 2016 Кластеризация IPython Notebook
16) 31 Мая 2016 Метрические методы IPython Notebook Решение с семинара
17) 7 Июня 2016 Ассоциативные правила и частые множества признаков
17) 14 Июня 2016 Презентации проектов
17) 21 Июня 2016 Экзамен

Домашние Задания

ДЗ 1. Срок - 2 февраля 2016
ДЗ 2. Срок - 20 февраля 2016
ДЗ 3. Срок - 4 марта 2016
ДЗ 4. Срок - 20 мая 2016
ДЗ 5. Срок - 8 июня 2016

Проект

Задание на проект
Согласование состава группы и набора данных: 25.03.2016 23:59
Срок сдачи первой части: 11.04.2016 23:59
Срок сдачи второй части: 10 дней до даты защиты проекта

Полезные ссылки (Будут пополняться)

Семинар 16

  1. Curse of Dimensionality

Семинар 12

Ensemble methods

  1. Ensemble Learning Wikipedia
  2. Sklearn Ensemble Learning
  3. Bias-Variance and Ensemble Methods

Feature Selection\Dimention Reduction

  1. Dimention Reduction Overview
  2. Publication on Feature Selection

Семинар 9

  1. ROC-Curve Introduction
  2. sklearn Cross-Validation Routines

Семинар 8

  1. On Logistic Regression with examples
  2. Perceptron Algorithm
  3. On Linear Classifiers

Семинар 7

  1. Sklearn Linear Models
  2. Statmodels Examples

Семинар 6

  1. SciPy Stats reference

Семинар 5

  1. Good Intro to Probability and Statistics
  2. Probability Cheat-Sheet
  3. Naive Bayes
  4. Monte-Carlo

Семинар 4

Optimization

  1. Gradient Descent - Coursera
  2. Regression Lecture Notes
  3. Optimization Methods in Scipy
  4. 3D plotting in Matplotlib

Семинар 3

Probability And Linear Algebra

  1. Matrix Cookbook
  2. PCA Tutorial
  3. Probability & Statistics Cheat-Sheet

Семинар 2

Pandas & Seaborn

  1. Pandas
  2. Pandas Cheat-Sheet
  3. Pandas Visualization
  4. Seaborn

Наборы данных

  1. Портал Открытых Данных РФ
  2. Funny Datasets
  3. Сборник Открытых Данных (!!!)
  4. Еще наборы данных

FYI

  1. Spurious Correlations
  2. Correlation

Семинар 1

Python

  1. PEP-8 Code Style Guide Cheat-sheet
  2. Python Tutorials Point
  3. Matplotlib Tutorial
  4. Matrix Manipulation Cheat-sheet
  5. Ipython Notebook
  6. Beaker Notebook
  7. yhat Rodeo

Ресурсы и Книги

  1. James, Witten, Hastie, Tibshirani — An Introduction to Statistical Learning
  2. Bishop — Pattern Recognition and Machine Learning (первые главы)
  3. MachineLearning.ru
  4. Kaggle
  5. UCI Repo
  6. Visual Intro to ML

Онлайн Курсы

  1. Andrew Ng's Course
  2. Introduction to ML
  3. Learning Data Science with Python
  4. Курс от ВШЭ
  5. Обзор МООС Курсов