Майнор Интеллектуальный анализ данных/Введение в анализ данных/ИАД-18 — различия между версиями

Материал из Wiki - Факультет компьютерных наук
Перейти к: навигация, поиск
(Выставление оценки)
(Расписание семинаров)
 
(не показана одна промежуточная версия 2 участников)
Строка 29: Строка 29:
 
  |19 января 2016 || align="center"|2 || Python для анализа данных. NumPy. || [http://nbviewer.jupyter.org/github/AnastasiaRysmyatova/ipython_notebooks/blob/master/ipython_notebook2.ipynb  ipython notebook с семинара ]
 
  |19 января 2016 || align="center"|2 || Python для анализа данных. NumPy. || [http://nbviewer.jupyter.org/github/AnastasiaRysmyatova/ipython_notebooks/blob/master/ipython_notebook2.ipynb  ipython notebook с семинара ]
 
  |-
 
  |-
|26 января 2016 || align="center"|3 || Python для анализа данных. Pandas. ||  
+
|26 января 2016 || align="center"|3 || Python для анализа данных. Pandas. Matplotlib. ||  
[http://nbviewer.jupyter.org/urls/dl.dropbox.com/s/kp583836pjvm64u/on_seminar.ipynb ipython notebook с семинара]
+
[http://nbviewer.jupyter.org/urls/dl.dropbox.com/s/l5ug7dlxj416e4a/sem_3.ipynb ipython notebook с семинара]
 
  |-
 
  |-
 +
|02 февраля 2016 || align="center"|4 || Решение задач. ||
 +
[http://nbviewer.jupyter.org/urls/dl.dropbox.com/s/ks0uai62dpaw7y7/seminar_4.ipynb задачи]
 +
|-
 +
|09 февраля 2016 || align="center"|5 || Градиентный спуск. Линейная регрессия. ||
 +
[http://nbviewer.jupyter.org/urls/dl.dropbox.com/s/w9s7ayz8kzl03ni/seminar_5.ipynb  ipython notebook с семинара]
 +
 +
[https://www.dropbox.com/s/lo10gizj4eyv26w/seminar_5_slid.pdf?dl=0  слайды]
 +
|-
 +
|16 февраля 2016 || align="center"|6 || Градиентный спуск. ||
 +
|-
 +
|01 марта 2016 || align="center"|7 || Градиентный спуск. Понятия Ridge и Lasso регрессии. ||
 +
[https://www.dropbox.com/s/cujciffsgrz93jg/assignment_gradient_descent.pdf?dl=0 Домашнее задание]
 +
|-
 +
|15 марта 2016 || align="center"|8 || Теория вероятностей. Решение задач на формулу полной вероятности и формулу Байеса.||
 +
[https://www.dropbox.com/s/lydfd3bss5ke47z/%D0%A2%D0%B5%D1%80%D0%B2%D0%B5%D1%80_%D0%B7%D0%B0%D0%B4%D0%B0%D1%87%D0%B8.pdf?dl=0 Задачи]
 +
|-
 +
|15 марта 2016 || align="center"|9 || Консультация. Ridge и Lasso регрессии. ||
 +
[http://nbviewer.jupyter.org/urls/dl.dropbox.com/s/t8fum2v9zuaduwz/sem_6.ipynb ipython notebook]
 +
|-
 +
|22 марта 2016 || align="center"|10 || Линейные алгоритмы классификации. Логистическая регрессия. ||
 +
|-
 +
|5 апреля 2016 || align="center"|11 || Подготовка к коллоквиуму. ||
 +
 +
|-
 +
|19 апреля 2016 || align="center"|12 || Решающие деревья. ||
 +
[http://nbviewer.jupyter.org/urls/dl.dropbox.com/s/ssmbi9f3lkosral/decision_trees.ipynb ipython notebook]
 +
|-
 +
|26 апреля 2016 || align="center"|13 || Пример работы с реальными данными (разбор проекта). ||
 +
[http://nbviewer.jupyter.org/urls/dl.dropbox.com/s/uh64e2mcu9dy924/project_s.ipynb ipython notebook]
 +
|-
 +
|10 мая 2016 || align="center"|14 || Случайные леса (Random Forest). Метод главных компонент (PCA).  ||
 +
[http://nbviewer.jupyter.org/urls/dl.dropbox.com/s/9e1vabeu5fpm9ch/decision_trees.ipynb RF_notebook ]
 +
[http://nbviewer.jupyter.org/urls/dl.dropbox.com/s/rhipwex1oz4av9r/PCA.ipynb PCA_notebook]
 +
|-
 +
|17 мая 2016 || align="center"|15 || Кластеризация. ||
 +
|-
 +
|24 мая 2016 || align="center"|16 || Решение задачек с [http://hackerrank.com hackerrank.com] ||
 +
[https://www.hackerrank.com/challenges/battery [1]],
 +
[https://www.hackerrank.com/challenges/stat-warmup [2]],
 +
[https://www.hackerrank.com/challenges/predicting-house-prices [3]],
 +
[https://www.hackerrank.com/challenges/predicting-office-space-price [4]],
 +
[https://www.hackerrank.com/challenges/document-classification [5](*)]
 +
|-
 +
|31 мая 2016 || align="center"|17 || Метрические алгоритмы. Метод ближайших соседей.||
 +
[http://nbviewer.jupyter.org/urls/dl.dropbox.com/s/70gqz2jvm0z1cl7/KNN.ipynb KNN_notebook ]
 +
|-
 +
|7 июня 2016 || align="center"|18 || Поиск ассоциативных правил. Алгоритм APriori||
 +
[http://nbviewer.jupyter.org/urls/dl.dropbox.com/s/m2glg69zfh06xwh/associative%20rules.ipynb notebook],
 +
[https://www.dropbox.com/s/xgulaxel6364hew/responses.csv?dl=0 данные],
 +
[https://www.dropbox.com/s/o83vr5fei1frack/ML_marketing.pdf?dl=0 презентация]
 
  |}
 
  |}
  
 
==Практические задания==
 
==Практические задания==
[http://nbviewer.jupyter.org/urls/dl.dropbox.com/s/ut61lqooc6ldgc3/HW1_Username.ipynb Практическое задание №1 "Изучение Numpy, Pandas, Matplotlib"]
+
[http://nbviewer.jupyter.org/urls/dl.dropbox.com/s/v6g0ld6y6vc5zmu/HW1_Username.ipynb Практическое задание №1 "Изучение Numpy, Pandas, Matplotlib"]
 +
 
 +
[http://nbviewer.jupyter.org/urls/dl.dropbox.com/s/6i734tudomxku56/HW2_Username.ipynb Практическое задание №2 "Методы линейной регрессии"]
 +
 
 +
[http://nbviewer.jupyter.org/urls/dl.dropbox.com/s/xpsuv6l33om4d6p/project.ipynb Проект. Начало.] ([https://www.dropbox.com/s/obcxbpwawie3zqy/student-mat.csv?dl=0 student-mat.csv], [https://www.dropbox.com/s/37pxauy419lakz5/student-por.csv?dl=0 student-por.csv])
 +
 
 +
 
 +
[http://nbviewer.jupyter.org/urls/dl.dropbox.com/s/0sny4z944ckdhhb/DecisionTree.ipynb Практическое задание №3 "DecisionTree"]
 +
 
 +
[http://nbviewer.jupyter.org/urls/dl.dropbox.com/s/c3hzq1z7h7tym2z/RF_KNN.ipynb Практическое задание №4 "Random Forest, KNN"]
 +
 
 +
[http://nbviewer.jupyter.org/urls/dl.dropbox.com/s/93s0tyzp0c5ey8y/project2.ipynb Проект. Продолжение.] ([https://www.dropbox.com/s/obcxbpwawie3zqy/student-mat.csv?dl=0 student-mat.csv], [https://www.dropbox.com/s/37pxauy419lakz5/student-por.csv?dl=0 student-por.csv])
 +
 
 +
[http://nbviewer.jupyter.org/urls/dl.dropbox.com/s/xjadj6v91blbufj/HW5_Username.ipynb Практическое задание №5 "Метод главных компонент"]. Срок сдачи: 19.06.2016 (задание не является обязательным!)
 +
 
 +
[https://www.dropbox.com/s/oo3ev457tkg5jxe/data_task1.csv?dl=0 data_task1], [https://www.dropbox.com/s/ym5qsyrxwtyhma6/data_task2.csv?dl=0 data_task2]

Текущая версия на 13:42, 13 июня 2016

Общая информация

  • Семинары в поддержку курса Введение в анализ данных .
  • Семинаристы: Игорь Гитман и Анастасия Рысьмятова.
  • Почта: "hse.minor.dm+18@gmail.com"


Выставление оценки

  1. На семинарах по некоторым темам будут проводиться проверочные работы.
  2. Также за курс будут выданы несколько практических заданий, которые будут оцениваться по десятибалльной шкале. На выполнение каждого практического задание будет даваться 2 недели. Штраф за просрочку сдачи составляет 0.2 балла в день.
  3. Оценка за работу в семестре будет ставиться исходя из набранных баллов.
  4. В конце семестра разрешается переписать одну пропущенную по любой причине проверочную работу. Также разрешается переписать все проверочные, пропущенные по уважительной причине.
  5. Результаты работ ИАД - 18

Расписание семинаров

Дата № занятия Занятие Материалы
12 января 2016 1 Вводный семинар. Обсуждение основных понятий анализа данных.

Неструктурированные материалы

19 января 2016 2 Python для анализа данных. NumPy. ipython notebook с семинара
26 января 2016 3 Python для анализа данных. Pandas. Matplotlib.

ipython notebook с семинара

02 февраля 2016 4 Решение задач.

задачи

09 февраля 2016 5 Градиентный спуск. Линейная регрессия.

ipython notebook с семинара

слайды

16 февраля 2016 6 Градиентный спуск.
01 марта 2016 7 Градиентный спуск. Понятия Ridge и Lasso регрессии.

Домашнее задание

15 марта 2016 8 Теория вероятностей. Решение задач на формулу полной вероятности и формулу Байеса.

Задачи

15 марта 2016 9 Консультация. Ridge и Lasso регрессии.

ipython notebook

22 марта 2016 10 Линейные алгоритмы классификации. Логистическая регрессия.
5 апреля 2016 11 Подготовка к коллоквиуму.
19 апреля 2016 12 Решающие деревья.

ipython notebook

26 апреля 2016 13 Пример работы с реальными данными (разбор проекта).

ipython notebook

10 мая 2016 14 Случайные леса (Random Forest). Метод главных компонент (PCA).

RF_notebook PCA_notebook

17 мая 2016 15 Кластеризация.
24 мая 2016 16 Решение задачек с hackerrank.com

[1], [2], [3], [4], [5(*)]

31 мая 2016 17 Метрические алгоритмы. Метод ближайших соседей.

KNN_notebook

7 июня 2016 18 Поиск ассоциативных правил. Алгоритм APriori

notebook, данные, презентация

Практические задания

Практическое задание №1 "Изучение Numpy, Pandas, Matplotlib"

Практическое задание №2 "Методы линейной регрессии"

Проект. Начало. (student-mat.csv, student-por.csv)


Практическое задание №3 "DecisionTree"

Практическое задание №4 "Random Forest, KNN"

Проект. Продолжение. (student-mat.csv, student-por.csv)

Практическое задание №5 "Метод главных компонент". Срок сдачи: 19.06.2016 (задание не является обязательным!)

data_task1, data_task2