Теория чисел (пилотный поток) 2024/25 — различия между версиями

Материал из Wiki - Факультет компьютерных наук
Перейти к: навигация, поиск
Строка 49: Строка 49:
 
== Контрольная работа ==
 
== Контрольная работа ==
  
 
+
<!--
  
 
==== Распределение по аудиториям ====  
 
==== Распределение по аудиториям ====  
Строка 69: Строка 69:
 
3. Можно от руки написать на планшете и затем распечатать.
 
3. Можно от руки написать на планшете и затем распечатать.
  
  <!--
+
   
  
 
Аудитории R201 (240 чел.), R205 (122 чел.), R301 (240 чел.), R304 (192 чел.), R404 (192 чел.), R405 (122 чел.), R503 (112 чел.).
 
Аудитории R201 (240 чел.), R205 (122 чел.), R301 (240 чел.), R304 (192 чел.), R404 (192 чел.), R405 (122 чел.), R503 (112 чел.).

Версия 19:56, 13 января 2025

О курсе

Это кур основ теории чисел, который включает в себя теорию сравнений, квадратичные вычеты, первообразные корни, арифметические функции. Параллельно будет происходить знакомство с приложениями теории чисел в криптографии и простейшими криптографическими протоколами.

Полезные ссылки

Теория чисел (пилотный поток) 2023/24

Дополнительные главы теории чисел (курс в 4-м модуле 2022-2023 у.г.)

Преподаватели и учебные ассистенты

Группа БПМИ241 БПМИ242 БПМИ243 БПМИ244
Лектор А.В. Устинов
Семинарист А.В. Устинов А. Калмынин
Ассистент [] [] [] []
Ассистент лектора Агаев Мурад

Правила выставления оценок

В домашнем задании каждая задача оценивается в 10 баллов. Баллы за задачи суммируются и линейно шкалируются на 10-балльную шкалу без округления. Итоговая оценка за ДЗ получается усреднением оценок по всем ДЗ (без округления). Округление происходит только в конце при вычислении итоговой оценки за курс.

Правила сдачи заданий

Всё должно быть написано аккуратно и понятно.

ПРОСРОЧКА: У Вас есть возможность дважды отправить домашнее задание после истечения срока сдачи в течение 24 часов. Однако этот шанс не может быть использован для сдачи последнего домашнего задания.

Лекции

Конспект лекций 2023 года.

Лекция 1 (10.01.2025) Основная теорема арифметики. Сравнения и их свойства. Полная и приведённая системы вычетов. Определение группы. Примеры групп. Определение кольца. Примеры колец. Кольцо вычетов. Группа обратимых элементов кольца вычетов. Малая теорема Ферма и теорема Эйлера. Теорема Вильсона.

Семинары

Семинар 1

Домашние задания

ДЗ-1

Контрольная работа

Коллоквиум

Программа коллоквиума

Cсылка для тех, кто будет онлайн сдавать. Начало 14:00.

Расписание коллоквиума

Группа Время аудитория
БПМИ231 10:00 R405
БПМИ232 9:30 R405
БПМИ233 13:00 R407
БПМИ234 11:10 R407

Правила проведения коллоквиума

Коллоквиум проходит в виде беседы со студентом, в которой студент рассказывает ответы на вопросы билета, а принимающий имеет возможность задавать любые уточняющие вопросы в рамках билета.

Билет будет состоять из следующих частей (максимально 9 баллов):

  1. два определения (по 1 баллу каждое);
  2. формулировки двух теорем без доказательства (по 1 баллу каждая);
  3. две теоремы с доказательствами (по 2.5 баллу каждое).

Если за ответ по билету было набрано 7,5-9 баллов, то студент имеет возможность запросить у проверяющего дополнительную сложную задачу (на 2 балла), которую проверяющий выбирает из списка дополнительных задач сам. Дополнительные задачи заранее не известны.
Замечание: Эта задача дается только в том случае, если студент набрал 7,5-9 баллов за все остальные части билета. Задача не прописана в билете, она выдается проверяющим.

Время подготовки билета На подготовку вопрос из билета (пунктов 1-3) 40 минут. Беседа с преподавателем идет не больше 40 минут. После беседы с преподавателем, если студент набирает 7,5-9 баллов, дается ещё до 20 минут на решение сложной задачи. Студент максимально может потратить 1 час и 45 минут на сдачу коллоквиума.

Оценка за коллоквиум равна минимуму из 10 и набранного числа баллов.

Замечание: За списывание и использование любых носителей информации (электронных и бумажных), студент получает 0 за коллоквиум без возможности пересдачи.

Экзамен

Экзамен письменный, 29 марта 2024 г. Длительность 2.5 часа, начало в 11:00, аудитория R401. Демо-версия

Cсылка для тех, кто будет онлайн сдавать.

Оценка

В течение года установлены следующие формы контроля:

  • один письменный экзамен (ЭК), в сессию после модуля;
  • одна письменная контрольная работа (KР), которую планируется провести в середине 3-го модуля;
  • один коллоквиум (KЛ), который планируется провести в конце 3-го модуля;
  • около 10 домашних заданий (ДЗ, где ДЗ --- есть среднее арифметическое оценок всех домашних работ); обычно домашнее задание выдается к каждому семинару.

Накопленная Оценка, НО, вычисляется без округления по следующей формуле: НО = 0.4 * ДЗ + 0.2 * Кр + 0.4 * КЛ. Итоговая Оценка за Курс, ИО, вычисляется по следующей формуле: ИО = Округление(7/10*НО + 3/10*ЭК),

где ДЗ — средняя оценка за все домашние задания, КР — оценка за контрольную работу, ЭК — оценка за экзамен, КЛ — оценка за коллоквиум. Если НО не меньше 8 (без округления), то студент может не сдавать экзамен. В этом случае ИО = Округление(НО). Округление арифметическое.

Ведомость

БПМИ231 БПМИ232 БПМИ233 БПМИ234


Сводная таблица с оценками по ДЗ

БПМИ231 БПМИ232 БПМИ233 БПМИ234

Книги

Основная литература

  1. [АР] Айерленд К. Роузен, М. Классическое введение в современную теорию чисел. - М.: Мир, 1998.
  2. [A] Акритас А.Г. Основы компьютерной алгебры с приложениями. 1994
  3. [АУ] Алфутова Н. Б., Устинов А. В. Алгебра и теория чисел. Сборник задач для математических школ. М.: МЦНМО, 2018
  4. [Б] Бухштаб А. А., Теория чисел
  5. [ВИМ] Виноградов И. М., Основы теории чисел.
  6. [НК] Ноден П., Китте К. Алгебраическая алгоритмика
  7. [MOV] Menezes A., Oorschot P. van, Vanstone S. Handbook of Applied Cryptography

Дополнительная литература

  1. Василенко, О. Н. Теоретико-числовые методы в криптографии МЦНМО, 2003
  2. [ВЭБ] Винберг Э. Б. Курс алгебры
  3. Герман, О. Н., Нестеренко, Ю. Теоретико-числовые методы в криптографии 2012
  4. Глухов М. М., Круглов И.А., Пичкур А.Б., Черёмушкин А.В. Введение в теоретико-числовые методы криптографии Лань, 2011
  5. Кнут, Д. Е. Искусство программирования для ЭВМ. Том 2: Получисленные алгоритмы "Вильямс" , М., Санкт-Петербург, Киев, 2000
  6. Коблиц Н. Курс теории чисел и криптографии. М.: ТВП, 2001.
  7. Нестеренко Ю. В., Теория чисел
  8. Ященко, В. В. (ред.) Введение в криптографию, МЦНМО, Москва, 1999
  9. Hoffstein, J.; Pipher, J., Silverman, J. H. An introduction to mathematical cryptography Springer, 2008,