Машинное обучение (сов. бак. ВШЭ-РЭШ 2024) — различия между версиями
Mhushchyn (обсуждение | вклад) |
Mhushchyn (обсуждение | вклад) |
||
Строка 9: | Строка 9: | ||
[https://t.me/+YV5D12VyN7dmZTcy Чат в телеграме] | [https://t.me/+YV5D12VyN7dmZTcy Чат в телеграме] | ||
− | [https://forms.gle/ | + | [https://forms.gle/Yf3EiF5tw5sCXFnSA Анонимная форма обратной связи] |
=== Лекции === | === Лекции === |
Версия 15:19, 2 сентября 2024
Содержание
О курсе
Курс читается для студентов 2-4 курсов совместного бакалавриата ВШЭ-РЭШ в 1-2 модулях.
Репозиторий с материалами курса на GitHub.
Анонимная форма обратной связи
Лекции
Лектор: Михаил Гущин (mhushchyn@hse.ru, @mikhail_h91)
Лекции проходят по вторникам в 16:20 (R205).
Семинары
Группа | Преподаватель | Ссылка на чат | Аудитория | Время |
---|---|---|---|---|
МО-1 | Владимир Бочарников | [ссылка Чат] | R504 | среда, 11:10 |
МО-2 | Александра Коган | [ссылка Чат] | - | пятница, 09:30 |
МО-3 | Сергей Корпачев | [ссылка Чат] | S224 | суббота, 14:40 |
Учебные ассистенты (ТУДУ)
Учебный ассистент |
---|
Софья Пирогова |
Артём Станкевич |
Правила выставления оценок
В курсе предусмотрено несколько форм контроля знаний:
- Практические домашние работы на Python или с теоретическими задачами (всего 6-8 домашних работ)
- Контрольная работа в середине курса
- Письменный экзамен
Итоговая оценка вычисляется на основе оценки за работу в семестре и оценки за экзамен:
Oитоговая = Округление(0.6 * ДЗ + 0.2 * КР + 0.2 * Э)
ДЗ — средняя оценка за практические домашние задания
КР — оценка за контрольную работу
Э — оценка за экзамен
Округление арифметическое.
Правила выставления автомата
Условие выставления автомата: (ДЗ >=6 and КР >= 6)
В случае автомата итоговая оценка считается так:
Oитоговая = Округление((0.6 * ДЗ + 0.2 * КР) / 0.8)
Правила сдачи заданий
За каждый день просрочки после мягкого дедлайна снимается 1 балл. После жёсткого дедлайна работы не принимаются. Даже при опоздании на одну секунду. Сдавайте заранее.
При обнаружении плагиата оценки за домашнее задание обнуляются всем задействованным в списывании студентам, а также подаётся докладная записка в деканат. Следует помнить, что при повторном списывании деканат имеет право отчислить студента.
При наличии уважительной причины пропущенную проверочную можно написать позднее, а дедлайн по домашнему заданию может быть перенесён. Дедлайн по домашнему заданию переносится на количество дней, равное продолжительности уважительной причины. Решение о том, является ли причина уважительной, принимает исключительно учебный офис.
Лекции
Лекция 1. Введение в машинное обучение. KNN.
Семинары
Семинар 1. Введение в машинное обучение.
Практические задания
За каждый день просрочки после мягкого дедлайна снимается 1 балл. После жёсткого дедлайна работы не принимаются, но есть исключение. Студенту разрешается два раза сдать домашнее задание после мягкого дедлайна (но до жёсткого) без штрафов.
Контрольная работа
Экзамен
Дополнительные материалы
Курсы по машинному обучению и анализу данных
- Онлайн-учебник по машинному обучению от ШАД
- Курс по машинному обучению К.В. Воронцова
- Курс на платформе "Открытое образование"
Книги
- Hastie T., Tibshirani R, Friedman J. The Elements of Statistical Learning (2nd edition). Springer, 2009
- Rosasco L., Introductory Machine Learning Notes, 2017
- Bishop C. M. Pattern Recognition and Machine Learning. Springer, 2006