Optimisation methods 2023/24 — различия между версиями

Материал из Wiki - Факультет компьютерных наук
Перейти к: навигация, поиск
(Внесено краткое описание курса и правило получения итоговой оценки)
(нет различий)

Версия 07:47, 16 октября 2023


Main information about the course

Course "Optimization methods" consists of several most important topics devoted to the theory of optimization and efficient optimization algorithms. During the course students will study

- theoretical part: necessary and sufficient optimality conditions in unconstrained and constrained optimization;

- practical part: zero, first and second order optimization algorithms, their implementation (for example, in Python) and testing.

The leading objective of the course is the following: students must be able to classify a given optimization problem and select an efficient alforithm for finding solution.

Teacher: Oleg Khamisov.

Assistants: Andrey Ignatov, Marco Krsmanovich.

Grading

Grade FG - Final grade, for the course is determined by the formula:

FG=0.7*(CT1+CT2+CT3)+0.3*FT,

where CT - Control Testing 1,2, and 3,

FT - Final Testing.

Numbers CT1, CT2, CT3, and FT are such that in the case of succesfull sulution of all testings final grading FT is equal to 10.