Алгебра КНАД 2023/2024 — различия между версиями

Материал из Wiki - Факультет компьютерных наук
Перейти к: навигация, поиск
(Краткое содержание лекций)
(Домашнее задание)
Строка 73: Строка 73:
  
 
* [https://disk.yandex.ru/i/2kCugma27tos2Q Домашнее задание 5]
 
* [https://disk.yandex.ru/i/2kCugma27tos2Q Домашнее задание 5]
 +
 +
* [https://disk.yandex.ru/i/F6IafgoK64aVxg Домашнее задание 6] Дедлайн 9:30 20-го октября (сдвигается на сутки).
  
 
= Контрольная работа =
 
= Контрольная работа =

Версия 10:46, 14 октября 2023

Преподаватели и учебные ассистенты

Группа БКНАД221 БКНАД222
Лектор Дима Трушин
Семинарист Галина Калеева
Ассистент Егор Рогожкин Данила Кульпанович

Контакты

Преподаватель/Ассистент Как связаться Когда
1
Дима Трушин telegram Напишите мне и мы договоримся о времени проведения консультации. Для тех кто в Москве, очные консультации по средам с 17:00 до 20:00 в S812.
2
Галина Калеева чат Консультации по вторникам в 18.00. Перед консультацией напишите в чат, что собираетесь прийти.
3
Егор Рогожкин telegram
4
Данила Кульпанович telegram

Формы контроля знаний студентов

  • Еженедельные домашние задания
  • Письменная контрольная работа по задачам
  • Устный экзамен по теории

Порядок формирования итоговой оценки

Итоговая оценка считается по формуле

F = 0,3 * H + 0,3 T + 0,4 E

где H -- оценка за еженедельные домашние задания, T -- оценка за письменную контрольную, E -- оценка за устный экзамен.

Только финальная оценка F округляется. Правила округления арифметические.

Краткое содержание лекций

Лекция 1 (07.09.2023). Бинарные операции. Ассоциативность, нейтральный элемент, обратный элемент, коммутативность. Определение группы. Аддитивная и мультипликативная нотации. Подгруппы и циклические подгруппы. Порядок элемента.

Лекция 2 (14.09.2023). Классификация циклических групп. Описание подгрупп в группе Z. Описание подгрупп в группе Z_n. Левые и правые смежные классы. Нормальные подгруппы. Теорема Лагранжа и ее следствия.

Лекция 3 (21.09.2023). Гомоморфизмы и изоморфизмы групп. Ядро и обрз гомоморфизма их свойства. Произведение групп. Конечные абелевы группы. Китайская теорема об остатках (формулировка). Структура конечных абелевых групп.

Лекция 4 (28.09.2023). Доказательство Китайской теоремы об остатках. Вторая версия Китайской теоремы об остатках. Структура Z_{p^n}^*. Криптография. Быстрое возведение в квадрат. Проблема дискретного логарифмирования. Система Диффи-Хелмана и Эль-Гамаля.

Лекция 5 (05.10.2023). Кольца, коммутативные кольца, поля, подкольца. Обратимые элементы, делители нуля, нильпотенты, идемпотенты. Идеалы. Описание идеалов в Z и Z_n. Гомоморфизмы и изоморфизмы колец. Китайская теорема об остатках для колец. Ядро и образ гомоморфизма колец и их свойства.

Лекция 6 (12.10.2023). Многочлены от одной переменной. Алгоритм Евклида деления с остатком, наибольший общий делитель, идеалы в F[x]. Неприводимые многочлены и однозначное разложение на множители в F[x]. Кольца полиномиальных остатков, Китайская теорема об остатках для колец полиномиальных остатков.

Домашнее задание

Каждый листок содержит задачи с семинара и соответствующее ДЗ. Дедлайн сдачи домашнего задания - начало следующего семинара. Дедлайн мягкий. При опоздании на t часов, оценка умножается на 0.7 t / 24.

Контрольная работа

Экзамен

Ведомости текущего контроля

  • Домашние задания
221 222
  • Результаты Контрольной работы
  • Итоговая ведомость

Ссылки

Литература

Основная

  • Курс алгебры, Винберг, Э. Б.
  • Заметки по теории кодирования, Ромащенко, А. Е.
  • Введение в алгебру: основы алгебры: учебник для вузов, Кострикин, А. И.
  • Идеалы, многообразия и алгоритмы. Кокс, Литтл, О'Ши.

Дополнительная

  • Практическая криптография, Фергюсон, Нильс
  • Базисы Гребнера и системы алгебраических уравнений, Аржанцев, И. В.
  • Сборник задач по алгебре, учебник, под ред. А. И. Кострикина, 3-е изд., испр. и доп.