Генеративные модели на основе ODE и SDE — различия между версиями
Строка 15: | Строка 15: | ||
== Домашние задания == | == Домашние задания == | ||
+ | Сдать можно в classroom: [https://classroom.google.com/c/NTkwMzYzOTg3NDUz?cjc=oup7kk4 ссылка], инвайт '''oup7kk4'''. | ||
+ | |||
+ | * [https://disk.yandex.ru/i/vxIBIpGEBL9HNA ДЗ №1] - дедлайн 27 октября 23:59. | ||
== Правила оценивания == | == Правила оценивания == |
Версия 17:22, 5 октября 2023
Общая информация
Лектор: Денис Ракитин
Туториал по ODE/SDE моделям, близкий к программе курса
Лекции
Лекция 1. Повторение теории вероятностей: условное матожидание, свойства. Теорема о представлении условного матожидания как L2 проекции. Score-функция, применения: поиск моды, семплирование с помощью динамики Ланжевена. Представление score-функции зашумленного распределения как УМО от условной score-функции. Denoising score matching: обучение score-функции регрессией на условную score-функцию. Noise Conditional Score Networks: обобщение на последовательность зашумленных распределений.
Статья(NCSN): https://arxiv.org/abs/1907.05600
Лекция 2. Повторение NCSN, визуальная интерпретация выражения score-функции через условную score-функцию. Обыкновенные дифференциальные уравнения (ODE): напоминание, дискретизация по схеме Эйлера. Винеровский процесс: определение, свойства, смысл. Представление Винеровского процесса через предел кусочно-линейного процесса случайного блуждания (Принцип инвариантности Донскера-Прохорова, формулировка). Стохастические дифференциальные уравнения (SDE): неформальное определение дискретизацией по схеме Эйлера(-Маруямы). Эволюция плотности величины, подчиняющейся ODE: уравнение непрерывности.
Домашние задания
Сдать можно в classroom: ссылка, инвайт oup7kk4.
- ДЗ №1 - дедлайн 27 октября 23:59.
Правила оценивания
Формула итоговой оценки: Оитог = 0.5 * Одз + 0.3 * Опроект + 0.2 * Оэкз
Формула накопленной оценки: Онакоп = 5/8 * Одз + 3/8 * Опроект
Если Онакоп больше или равна 5.5, ее можно округлить и зачесть за итог.