Theoretical computer science spring 2023 — различия между версиями
Bbauwens (обсуждение | вклад) |
Bauwens (обсуждение | вклад) |
||
(не показано 26 промежуточных версии 2 участников) | |||
Строка 5: | Строка 5: | ||
Teacher: [https://www.hse.ru/en/org/persons/160550073 Bruno Bauwens] | Teacher: [https://www.hse.ru/en/org/persons/160550073 Bruno Bauwens] | ||
− | + | Homeworks need to be emailed to brbauwens -at- gmail.com before the start of the lecture next lecture. Put tcs in the subject line. | |
+ | For practical information ask to join the telegram group. | ||
+ | |||
+ | [https://www.dropbox.com/scl/fi/2opgvanhsuuqyrt1z5zhl/scores.ods?dl=0&rlkey=v0htrtejs04c1pujinri7ozqj Scores] | ||
= Course Materials = | = Course Materials = | ||
Строка 18: | Строка 21: | ||
! Video !! Summary !! Notes !! Homework | ! Video !! Summary !! Notes !! Homework | ||
|- | |- | ||
− | || [https://youtu.be/BHm2eHFnC6U 08.02] || Regular languages 1: deterministic automata, pumping lemma, closure properties || [https://www.dropbox.com/s/ | + | || [https://youtu.be/BHm2eHFnC6U 08.02] || Regular languages 1: deterministic automata, pumping lemma, closure properties || [https://www.dropbox.com/s/l764sm569b9ygic/automata.pdf?dl=0 lecture 1 & 2] || [https://www.dropbox.com/s/okcga6o20qsrxe2/1_HW.pdf?dl=0 hw1] |
|- | |- | ||
− | || 15.02 || Regular languages | + | || 15.02 || Regular languages 2: nondeterministic automata and regular expressions || || [https://www.dropbox.com/s/4ylwf3hdoncym8v/2_HW.pdf?dl=0 hw2] |
|- | |- | ||
− | || | + | || 01.03 || Chapter 1 of discrete math for computer science (see 1st book below). Turing machines || [https://www.dropbox.com/s/jslijos3lp03m83/turingDef.pdf?dl=0 Turing machines] || [https://www.dropbox.com/s/f3q0q0378y1o2y6/3_HW.pdf?dl=0 hw3] |
|- | |- | ||
− | || | + | || 16.03 || Recursion and induction. (Chapt 3 of discrete math book.) Turing machines. || || [https://www.dropbox.com/s/ee0kaxd8wrr5k7b/4_HW.pdf?dl=0 hw4] |
|- | |- | ||
− | || | + | || 23.03 || Invariants (Chapt 5). Undecidability || [https://www.dropbox.com/s/nj7hw8udpbaha37/undecidable.pdf?dl=0 lecture 3.A] || [https://www.dropbox.com/s/17ogtcftqh7ybzo/5_HW.pdf?dl=0 hw5] |
+ | |- | ||
+ | || 29.03 || Completeness || [https://www.dropbox.com/s/ykbkpjm4as46nay/incompleteness.pdf?dl=0 3.B] || [https://www.dropbox.com/s/5r16xyv2q65dt4m/6_HW.pdf?dl=0 hw6] | ||
|- | |- | ||
− | || | + | || 12.04 || (online, in zoom) The classes P, EXP, PSPACE, EXPSPACE. Time and space hierarchy theorems. || See Sipser chapts 7 and 8 || [https://www.dropbox.com/s/t25x38vop05xnlu/7_HW.pdf?dl=0 hw7] |
|- | |- | ||
− | || | + | || 19.04 || The class NP, NP-completeness, reduction from SAT to IND-SET || [https://www.dropbox.com/s/90m0yxt62f02mmm/classNP.pdf?dl=0 notes] || [https://www.dropbox.com/s/pxawna41u2xumim/8_HW.pdf?dl=0 hw8] |
|- | |- | ||
− | + | || 26.04 || Reductions. Proof of the Levin-Cook theorem. ||[https://www.dropbox.com/s/nen161dakmq3646/circuits.pdf?dl=0 circuits][https://www.dropbox.com/s/wlrssw0q1tfx49p/moreReductions.pdf?dl=0 reductions] || [https://www.dropbox.com/s/f3t6ob6fuvi9fhe/9_HW.pdf?dl=0 hw9] | |
|- | |- | ||
− | || | + | || 17.05 || Exam. Start at 16h00. [https://www.dropbox.com/s/dfv4vehr2mqbxrw/coll.pdf?dl=0 Theory questions.] Also solve 4 exercises as in the homework, including 1 NP-completeness proof. |
|} | |} | ||
= Grading = | = Grading = | ||
− | Homework: | + | Homework: 35% |
− | Theory exam: | + | Theory exam: 35% |
− | Problem solving exam: | + | Problem solving exam: 30% |
− | + | ||
+ | Passing threshold is 4/10. Grades above 5/10 are rounded up, the other grades are rounded down. | ||
= References = | = References = | ||
+ | |||
+ | '''Basic math''' | ||
+ | |||
+ | Golovnev, Kulikov, Podolskii, Shen, Discrete mathematics for computer science, 2020. | ||
+ | |||
+ | [http://www.cs.elte.hu/~lovasz/dmbook.ps Lecture notes: Discrete Mathematics], L. Lovasz, K. Vesztergombi | ||
+ | |||
+ | [http://rubtsov.su/public/DM-HSE-Draft.pdf Лекции по дискретной математике] (черновик учебника, in Russian) | ||
+ | |||
Текущая версия на 17:59, 26 апреля 2023
Содержание
[убрать]Classes
Wednesdays 18:10–21:00, in room S834.
Teacher: Bruno Bauwens
Homeworks need to be emailed to brbauwens -at- gmail.com before the start of the lecture next lecture. Put tcs in the subject line.
For practical information ask to join the telegram group.
Course Materials
Video | Summary | Notes | Homework |
---|---|---|---|
08.02 | Regular languages 1: deterministic automata, pumping lemma, closure properties | lecture 1 & 2 | hw1 |
15.02 | Regular languages 2: nondeterministic automata and regular expressions | hw2 | |
01.03 | Chapter 1 of discrete math for computer science (see 1st book below). Turing machines | Turing machines | hw3 |
16.03 | Recursion and induction. (Chapt 3 of discrete math book.) Turing machines. | hw4 | |
23.03 | Invariants (Chapt 5). Undecidability | lecture 3.A | hw5 |
29.03 | Completeness | 3.B | hw6 |
12.04 | (online, in zoom) The classes P, EXP, PSPACE, EXPSPACE. Time and space hierarchy theorems. | See Sipser chapts 7 and 8 | hw7 |
19.04 | The class NP, NP-completeness, reduction from SAT to IND-SET | notes | hw8 |
26.04 | Reductions. Proof of the Levin-Cook theorem. | circuitsreductions | hw9 |
17.05 | Exam. Start at 16h00. Theory questions. Also solve 4 exercises as in the homework, including 1 NP-completeness proof. |
Grading
Homework: 35%
Theory exam: 35%
Problem solving exam: 30%
Passing threshold is 4/10. Grades above 5/10 are rounded up, the other grades are rounded down.
References
Basic math
Golovnev, Kulikov, Podolskii, Shen, Discrete mathematics for computer science, 2020.
Lecture notes: Discrete Mathematics, L. Lovasz, K. Vesztergombi
Лекции по дискретной математике (черновик учебника, in Russian)
Computational complexity
Sipser, Introduction to the theory of computation", 3rd edition, 2013, chapters 1, 2–8. (Short and good for basic understanding.)
Mertens and Moore, The Nature of Computation, 2011. (Pleasant reading, loads of interesting background, but rather large.)
Arora and Barak, Computational Complexity, 2009. (Use this after you made many exercises in the above books.)
Mathematical writing
Sosinsky, Как написать математическую статью по-английски, 2000.
Knuth, Technical writing, transcripts of lectures, 1987.
Gillman, Writing Mathematics Well, 1987.
Office hours
Person | Monday | Tuesday | Wednesday | Thursday | Friday |
---|---|---|---|---|---|
Bruno Bauwens, S834, Zoom | 14:00-18:00 |
Warn me in advance by email.