Statistical learning theory — различия между версиями
Bbauwens (обсуждение | вклад) м |
Mednik (обсуждение | вклад) м (Откат правок Seosky (обсуждение) к версии Bbauwens) |
||
(не показано 18 промежуточных версии 3 участников) | |||
Строка 1: | Строка 1: | ||
− | == | + | == Information == |
− | Some number of students have trouble with math and English. | + | - All lecture notes, seminars and solutions in 1 [https://www.dropbox.com/s/yb7ozl6kgtehyrq/all.pdf?dl=0 pdf]. |
+ | |||
+ | - [https://www.dropbox.com/s/pxxw5l8n07la2u3/marksAfterFirstModule.pdf?dl=0 Marks] for the first module. | ||
+ | |||
+ | - [https://www.dropbox.com/s/de3v89z4rtg0jvk/qparisSeminar.pdf?dl=0 Solutions] of the seminar of 12 December. | ||
+ | |||
+ | - The teacher for the second module is Quentin Paris. You can find all materials [https://www.qparis-math.com/test here]. | ||
+ | |||
+ | == Mistakes and Russian texts == | ||
+ | |||
+ | Some number of students have trouble with math and English. Email questions! '''Mistakes''', questions and answers are [https://www.dropbox.com/s/wh6hsecvoi11099/QA.pdf?dl=0 '''here''']. | ||
'''Russian texts:''' Tatiana has send me the following links that might help those who have trouble with English. A [http://www.machinelearning.ru/wiki/images/d/d9/Voron-2011-tnop.pdf lecture] on VC-dimensions was given by K. Vorontsov. | '''Russian texts:''' Tatiana has send me the following links that might help those who have trouble with English. A [http://www.machinelearning.ru/wiki/images/d/d9/Voron-2011-tnop.pdf lecture] on VC-dimensions was given by K. Vorontsov. | ||
Строка 15: | Строка 25: | ||
There are two exams. | There are two exams. | ||
− | '''Problems exam: Tuesday 31 Okt. 12h10-15h00''': The score of this exam has weight 0.2 in your final grade. You solve exercises similar to the ones in the seminars. You can bring lecture notes, handwritten notes, and pages from Chapt 3, Sect. 4.4 and Chapt 6 from the book "Foundations of Machine Learning Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar". | + | '''Problems exam: Tuesday 31 Okt. 12h10-15h00''': The score of this exam has weight 0.2 in your final grade. You solve exercises similar to the ones in the seminars. You can bring lecture notes, solutions of the problem lists, handwritten notes, and pages from Chapt 3, Sect. 4.4 and Chapt 6 from the book "Foundations of Machine Learning Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar". |
− | '''Colloquium exam''': This exam counts for 0.2 of your final grade. You will receive a lemma, proposition or theorem from the lecture notes (and a few topics from the seminars). You need to write the proof and the teacher will ask questions to check your understanding. | + | '''Colloquium exam''': This exam counts for 0.2 of your final grade. You will receive a lemma, proposition or theorem from the lecture notes (and a few topics from the seminars). You need to write the proof and the teacher will ask questions to check your understanding. You can bring '''a single A4 sheet with things that you find hard to remember'''. You can write on both sides of this sheet. You can know your subgroup from [https://www.dropbox.com/s/x6j4mmx5vwh8pdn/groupsStudents.pdf?dl=0 this list]. |
'''[https://www.dropbox.com/s/opcny1k5yujv1kj/questionListColloquium.pdf?dl=0 List] of questions for the colloquium.''' | '''[https://www.dropbox.com/s/opcny1k5yujv1kj/questionListColloquium.pdf?dl=0 List] of questions for the colloquium.''' | ||
Строка 68: | Строка 78: | ||
| 3 okt || Agnostic learning and the adaBoost algorithm || [https://www.dropbox.com/s/7ya6pk9wfo8fbk9/5lect.pdf?dl=0 5th lecture] (21st of Okt. added part about comp. learning and Boosting) || [https://www.dropbox.com/s/p1774864pxyvqwm/5seminar.pdf?dl=0 Problem list 5] || | | 3 okt || Agnostic learning and the adaBoost algorithm || [https://www.dropbox.com/s/7ya6pk9wfo8fbk9/5lect.pdf?dl=0 5th lecture] (21st of Okt. added part about comp. learning and Boosting) || [https://www.dropbox.com/s/p1774864pxyvqwm/5seminar.pdf?dl=0 Problem list 5] || | ||
|- | |- | ||
− | | 10 okt || Boosting: risk bounds using Rademacher complexities || [https://www.dropbox.com/s/knhzehn2ggrhize/6lect.pdf?dl=0 6th lecture] ( | + | | 10 okt || Boosting: risk bounds using Rademacher complexities || [https://www.dropbox.com/s/knhzehn2ggrhize/6lect.pdf?dl=0 6th lecture] (Update 27th of Okt.) Mohri's book: p33-40 || [https://www.dropbox.com/s/hmt1fm58cy8mwua/6seminar.pdf?dl=0 Problem list 6] || See lecture notes. |
|- | |- | ||
− | | 17 okt || Margin theory and a deep boosting algorithm || Mohri's book: p75-83, p131-136 || || | + | | 17 okt || Margin theory and a deep boosting algorithm || Mohri's book: p75-83, p131-136 || [https://www.dropbox.com/s/wihspbstez2x0e9/7seminar.pdf?dl=0 Problem list 7] || [https://www.dropbox.com/s/32jp8alarkqy6gn/7solution.pdf?dl=0 Solutions list 7] |
|- | |- | ||
|} | |} |
Текущая версия на 13:36, 26 августа 2022
Содержание
Information
- All lecture notes, seminars and solutions in 1 pdf.
- Marks for the first module.
- Solutions of the seminar of 12 December.
- The teacher for the second module is Quentin Paris. You can find all materials here.
Mistakes and Russian texts
Some number of students have trouble with math and English. Email questions! Mistakes, questions and answers are here.
Russian texts: Tatiana has send me the following links that might help those who have trouble with English. A lecture on VC-dimensions was given by K. Vorontsov. A course on Statistical Learning Theory by Nikita Zhivotovsky is given at MIPT. Some short description about PAC learning on p136 in the book ``Наука и искусство построения алгоритмов, которые извлекают знания из данных, Петер Флах. On machinelearning.ru you can find brief and clear definitions.
Exams module 1
Consultation: Monday 30th of Oktober, 9h30-11h50 classroom 435: I will be answering questions to all interested students.
There are two exams.
Problems exam: Tuesday 31 Okt. 12h10-15h00: The score of this exam has weight 0.2 in your final grade. You solve exercises similar to the ones in the seminars. You can bring lecture notes, solutions of the problem lists, handwritten notes, and pages from Chapt 3, Sect. 4.4 and Chapt 6 from the book "Foundations of Machine Learning Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar".
Colloquium exam: This exam counts for 0.2 of your final grade. You will receive a lemma, proposition or theorem from the lecture notes (and a few topics from the seminars). You need to write the proof and the teacher will ask questions to check your understanding. You can bring a single A4 sheet with things that you find hard to remember. You can write on both sides of this sheet. You can know your subgroup from this list.
List of questions for the colloquium.
Group | Date | Time | Room |
---|---|---|---|
БПМИ 141-1 | Wednesday 1st of November | 12h10-15h40 | 219 |
БПМИ 141-2 | Wednesday 1st of November | 13h40-16h10 | 219 |
БПМИ 142-1 | Wednesday 1st of November | 16h40-18h40 | 219 |
БПМИ 142-2 | Wednesday 1st of November | 17h40-19h40 | 219 |
БПМИ 143+145 | Thursday 2th of November | 15h10-17h10 | 219 |
БПМИ 144 | Thursday 2th of November | 16h40-18h40 | 219 |
3th year | Friday 3th of November | 15h10-17h40 | 219 |
Your score of the homework has weight 0.1 in your final grade. Activities in the second module count for 0.5 of weight to the final grade.
Homework
General Information
Course materials
Date | Summary | Lecture notes | Problem list | Solutions |
---|---|---|---|---|
5 sept | PAC-learning and VC-dimension: definitions | 1st and 2nd lecture Updated on 13th of Sept. | Problem list 1 | Solutions list 1 |
12 sept | PAC-learning and VC-dimension: proof of fundamental theorem | Problem list 2 | Solutions list 2 | |
19 sept | Sauer's lemma, neural networks and agnostic PAC-learning | 3th lecture Updated on the 23th of Sept. | Problem list 3 | Solutions list 3 |
26 sept | Measure concentration, agnostic PAC-learning and Computational learning theory | 4th lecture | Problem list 4 | Solutions list 4 |
3 okt | Agnostic learning and the adaBoost algorithm | 5th lecture (21st of Okt. added part about comp. learning and Boosting) | Problem list 5 | |
10 okt | Boosting: risk bounds using Rademacher complexities | 6th lecture (Update 27th of Okt.) Mohri's book: p33-40 | Problem list 6 | See lecture notes. |
17 okt | Margin theory and a deep boosting algorithm | Mohri's book: p75-83, p131-136 | Problem list 7 | Solutions list 7 |
For the last lecture: on the exams there will only be questions about the seminar. The materials of the theory lectures will be covered again in more detail in the 2nd module.
A gentle introduction to the materials of the first 3 lectures and an overview of probability theory, can be found in chapters 1-6 and 11-12 of the following book: Sanjeev Kulkarni and Gilbert Harman: An Elementary Introduction to Statistical Learning Theory, 2012.
Foundations of machine learning, Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalker, 2012. These books can downloaded from http://gen.lib.rus.ec/ .
(We will study a new boosting algorithm, based on the paper: Multi-class deep boosting, V. Kuznetsov, M Mohri, and U. Syed, Advances in Neural Information Processing Systems, p2501--2509, 2014. Notes will be provided.)
Office hours
Person | Monday | Tuesday | Wednesday | Thursday | Friday | ||
---|---|---|---|---|---|---|---|
|
Bruno Bauwens | 15:05–18:00 | 15:05–18:00 | Room 620 | |||
|
Quentin Paris |