Statistics DSBA 2020/2021 — различия между версиями
(→Seminar notes) |
Axyniia (обсуждение | вклад) |
||
(не показано 14 промежуточных версии 2 участников) | |||
Строка 9: | Строка 9: | ||
{| class="wikitable" style="text-align:center" | {| class="wikitable" style="text-align:center" | ||
|- | |- | ||
− | ! Group!! | + | ! Group!! БПАД201 !! БПАД202 !! БПАД203 |
|- | |- | ||
|| Teacher ||colspan="3"| [https://www.hse.ru/org/persons/14276760 Peter Lukianchenko] | || Teacher ||colspan="3"| [https://www.hse.ru/org/persons/14276760 Peter Lukianchenko] | ||
|- | |- | ||
− | || Assistant || | + | || Assistant || || || || |
|} | |} | ||
+ | |||
= Communication = | = Communication = | ||
Строка 23: | Строка 24: | ||
= Lecture notes = | = Lecture notes = | ||
+ | |||
'''[https://www.dropbox.com/s/9rfctx62918trey/1%20Lect%20Sept1_d.pdf?dl=0 Lecture 1]''' (01.09.2020). Welcome to Statistics! | '''[https://www.dropbox.com/s/9rfctx62918trey/1%20Lect%20Sept1_d.pdf?dl=0 Lecture 1]''' (01.09.2020). Welcome to Statistics! | ||
Строка 31: | Строка 33: | ||
'''[https://www.dropbox.com/s/41sobtq08y48947/4%20Lecture%20.pdf?dl=0 Lecture 4]''' (22.09.2020). Joint discrete distribution. Conditional probability. Covariance. Correlation. | '''[https://www.dropbox.com/s/41sobtq08y48947/4%20Lecture%20.pdf?dl=0 Lecture 4]''' (22.09.2020). Joint discrete distribution. Conditional probability. Covariance. Correlation. | ||
+ | |||
+ | '''[https://www.dropbox.com/s/1q0ac1abnpw9tne/5%20Statistics_Lect%20sept%2029_done%20%20-%20%20Compatibility%20Mode.pdf?dl=0 Lecture 5]''' (29.09.2020) Covariance. Correlation. Continuous distribution. | ||
+ | |||
+ | '''[https://www.dropbox.com/s/usyhdpte0uoakjf/6%20Lecture.pdf?dl=0 Lecture 6]''' (06.10.2020) Continuous distribution. | ||
+ | |||
+ | '''[https://www.dropbox.com/s/xvcmqibbyw22y7k/Lecture%207.pdf?dl=0 Lecture 7]''' (13.10.2020) Normal distribution. Standard normal distribution. Joint distribution. Uniform distribution. | ||
+ | |||
+ | '''[https://www.dropbox.com/s/ry3emtfy2f6z4md/8%20Lecture%20.pdf?dl=0 Lecture 8]''' (27.10.2020) Data representation. Exponential, Poisson, and Uniform distributions. Continuity correction. | ||
+ | |||
+ | '''[https://www.dropbox.com/s/s4gnj126k1qb2wt/9%2010%20Lecture.pdf?dl=0 Lectures 9-10]''' (2-3.11.2020) Law of large numbers. Distribution of a function of random variable. Distribution of sample proportion. Chi-squared distribution. | ||
+ | |||
+ | '''[https://www.dropbox.com/s/5cvlqt341z83v1v/11%20Lecture.pdf?dl=0 Lecture 11]''' (9.11.2020) Point estimation. | ||
+ | |||
+ | '''[https://www.dropbox.com/s/ulk6m9zm0raozpd/12%20Lecture%20November%2010.pdf?dl=0 Lecture 12]''' (16.11.2020) Likelihood function. | ||
+ | |||
+ | '''[https://www.dropbox.com/s/ufo1d3rrdbsd8sl/14%20Lecture.pdf?dl=0 Lecture 14]''' (23.11.2020) Confidence intervals. Part 1 | ||
+ | |||
+ | '''[https://www.dropbox.com/s/rwbqyxnde0y6mcl/15%20Lecture.pdf?dl=0 Lecture 15]''' (30.11.2020) Confidence intervals. Part 2 | ||
= Seminar notes = | = Seminar notes = | ||
− | |||
− | [https://www.dropbox.com/s/9916r2ewhbjcj5b/sem%203%20Afanasev.pdf?dl=0 Seminar 3] | + | '''[https://www.dropbox.com/s/on7mye1f5kpqq0h/sem%201%20Afanasev.pdf?dl=0 Seminar 1]''' |
+ | |||
+ | '''[https://www.dropbox.com/s/9916r2ewhbjcj5b/sem%203%20Afanasev.pdf?dl=0 Seminar 3]''' | ||
+ | |||
+ | '''[https://www.dropbox.com/s/vs5vrc1b2kwkbxd/sem%204%20Afanasev.pdf?dl=0 Seminar 4]''' | ||
+ | |||
+ | '''[https://www.dropbox.com/s/c8xlztowczpsv2m/sem%205%20Afanasev.pdf?dl=0 Seminar 5]''' | ||
+ | |||
+ | '''[https://www.dropbox.com/s/j6czzeo8taydnaa/sem%206%20Afanasev.pdf?dl=0 Seminar 6]''' | ||
+ | |||
+ | '''[https://www.dropbox.com/s/ljwj09tm80fbp4c/sem%207%20Afanasev.pdf?dl=0 Seminar 7]''' | ||
+ | |||
+ | '''[https://www.dropbox.com/s/oyksqc0naaz03rq/sem%209%20orig.pdf?dl=0 Seminar 9]''' | ||
+ | |||
+ | '''[https://www.dropbox.com/s/0yv7oskrs4bizjf/sem%2010-11%20Afanasev.pdf?dl=0 Seminar 10-11]''' | ||
+ | |||
+ | '''[https://www.dropbox.com/s/57efg2oxnfz2228/sem%2012%20Afanasev.pdf?dl=0 Seminar 12]''' | ||
+ | |||
+ | '''[https://www.dropbox.com/s/3is9ejn0pv985ll/sem%2013%20Afanasev.pdf?dl=0 Seminar 13]''' | ||
+ | |||
+ | '''[https://www.dropbox.com/s/o8080kj8r879hw0/sem%2014%20Afanasev.pdf?dl=0 Seminar 14]''' | ||
+ | |||
+ | '''[https://www.dropbox.com/s/dv9s6pp3j7mg3or/sem%2015%20Afanasev.pdf?dl=0 Seminar 15]''' | ||
+ | |||
+ | '''[https://www.dropbox.com/s/tn52snxcnw95q2i/sem%2016%20Afanasev.pdf?dl=0 Seminar 16]''' | ||
+ | |||
+ | '''[https://www.dropbox.com/s/vm3t30if7lzqp2x/sem%2017%20Afanasev.pdf?dl=0 Seminar 17]''' | ||
+ | |||
+ | = Hometask = | ||
+ | |||
+ | '''[https://docs.google.com/spreadsheets/d/1SnpdGSW5gOMmhbyNOgfIdLn1RFV5Wg-pYgbV73-LWdE/edit?usp=drivesdk Link to Google Sheet with grades]''' | ||
+ | |||
+ | '''[https://www.dropbox.com/s/zt1kvle0soj68h0/HW1.pdf?dl=0 Hometask 1]''' (Deadline: 18.09.2020) Basics of Probability. | ||
+ | |||
+ | '''[https://www.dropbox.com/s/i0toc0bae2tk5mm/HW2.pdf?dl=0 Hometask 2]''' (Deadline: 25.09.2020) Probabilities of Complex Events. | ||
+ | |||
+ | '''[https://www.dropbox.com/s/5o71fadci8gg0dm/HW3.pdf?dl=0 Hometask 3]''' (Deadline: 02.10.2020) Expectation and variance. | ||
+ | |||
+ | '''[https://www.dropbox.com/s/fcyv79ytugxzcej/HW4.pdf?dl=0 Hometask 4]''' | ||
+ | |||
+ | '''[https://www.dropbox.com/s/25s9ngvn1my6c0i/Stat2020_HW_5.pdf?dl=0 Hometask 5]''' | ||
+ | |||
+ | '''[https://www.dropbox.com/s/3901iimtuzy6e01/Stat2020_HW_6.pdf?dl=0 Hometask 6]''' | ||
+ | |||
+ | '''[https://www.dropbox.com/s/wzw2dqoj0byzgwx/Stat2020_HW_7.pdf?dl=0 Hometask 7]''' (Deadline: 07.12.2020) Method of Moments. Least Squares. Maximum Likelihood. | ||
+ | Confidence intervals. | ||
= Grading system = | = Grading system = | ||
− | + | Interim assessment (1 module) | |
− | + | 0.7 * FallMock (October Midterm) + 0.3 * First module Home assignments | |
− | + | Interim assessment (4 module) | |
− | + | 0.17 * 2nd-4th module Home assignments + 0.09 * FinalExam (June Exam) + 0.16 * Interim assessment (1 module) + 0.12 * SpringMock (Spring Midterm) + 0.3 * University of London exams (May Exam) + 0.16 * WinterExam (December Exam) | |
All marks are out of 100 points. | All marks are out of 100 points. |
Текущая версия на 18:52, 25 октября 2021
Содержание
[убрать]About
This page contains information about Statistics course at DSBA.
Actual syllabus can be found here.
Teachers and assistants
Group | БПАД201 | БПАД202 | БПАД203 | |
---|---|---|---|---|
Teacher | Peter Lukianchenko | |||
Assistant |
Communication
We use Telegram messenger to share files and Zoom meetings links.
Link to course channel: click
Lecture notes
Lecture 1 (01.09.2020). Welcome to Statistics!
Lecture 2 (08.09.2020). Axioms of probability. Basics of combinatorics. Geometric probability.
Lecture 3 (15.09.2020). Random variable. Discrete pdf. Expectation and variance. Bernoulli distribution. Bayes rule.
Lecture 4 (22.09.2020). Joint discrete distribution. Conditional probability. Covariance. Correlation.
Lecture 5 (29.09.2020) Covariance. Correlation. Continuous distribution.
Lecture 6 (06.10.2020) Continuous distribution.
Lecture 7 (13.10.2020) Normal distribution. Standard normal distribution. Joint distribution. Uniform distribution.
Lecture 8 (27.10.2020) Data representation. Exponential, Poisson, and Uniform distributions. Continuity correction.
Lectures 9-10 (2-3.11.2020) Law of large numbers. Distribution of a function of random variable. Distribution of sample proportion. Chi-squared distribution.
Lecture 11 (9.11.2020) Point estimation.
Lecture 12 (16.11.2020) Likelihood function.
Lecture 14 (23.11.2020) Confidence intervals. Part 1
Lecture 15 (30.11.2020) Confidence intervals. Part 2
Seminar notes
Hometask
Link to Google Sheet with grades
Hometask 1 (Deadline: 18.09.2020) Basics of Probability.
Hometask 2 (Deadline: 25.09.2020) Probabilities of Complex Events.
Hometask 3 (Deadline: 02.10.2020) Expectation and variance.
Hometask 7 (Deadline: 07.12.2020) Method of Moments. Least Squares. Maximum Likelihood. Confidence intervals.
Grading system
Interim assessment (1 module)
0.7 * FallMock (October Midterm) + 0.3 * First module Home assignments
Interim assessment (4 module)
0.17 * 2nd-4th module Home assignments + 0.09 * FinalExam (June Exam) + 0.16 * Interim assessment (1 module) + 0.12 * SpringMock (Spring Midterm) + 0.3 * University of London exams (May Exam) + 0.16 * WinterExam (December Exam)
All marks are out of 100 points.
Rules
- Homework submitted after the general deadline will not be accepted.
- The common mistakes made in the homework will be discussed during the seminars.
- Any fact of cheating or breach of academic integrity will result in receiving a "0" (zero) for this work.