Into to DataMining and Machine Learning 2020 2021 — различия между версиями
Machine (обсуждение | вклад) (Новая страница: «'''Lecturer:''' Dmitry Ignatov '''TA:''' Stefan Nikolić === Homeworks === Homework 1: To be announced === Lecture on 16 Jan 2020=== Intro slides. Course pl…») |
Machine (обсуждение | вклад) (→Homeworks) |
||
Строка 6: | Строка 6: | ||
=== Homeworks === | === Homeworks === | ||
− | Homework 1: | + | Homework 1: Spectral Clustering |
+ | Homework 2: | ||
+ | Homework 3: Recommender Systems | ||
=== Lecture on 16 Jan 2020=== | === Lecture on 16 Jan 2020=== |
Версия 18:03, 11 июня 2021
Lecturer: Dmitry Ignatov
TA: Stefan Nikolić
Содержание
[убрать]Homeworks
Homework 1: Spectral Clustering Homework 2: Homework 3: Recommender Systems
Lecture on 16 Jan 2020
Intro slides. Course plan. Assessment criteria. ML&DM libraries. What to read and watch?
Practice: demonstration with Orange.
Lecture on 23 Jan 2020
Introduction to Clustering. Taxonomy of clustering methods. K-means. K-medoids. Fuzzy C-means. Types of distance metrics. Hierarchical clustering.
Practice: demonstration with Orange.
Lecture on 30 Jan 2020
Introduction to Clustering (continued). Density-based techniques. DBScan and Mean-shift.
Practice: demonstration with Orange and web-demo.
Practice on 6 Feb 2020
Clustering with scikit-learn (k-means, hierarchical clustering, DBScan, MeanShift, Spectral Clustering).
Lecture on 6 Feb 2020
Graph and spectral clustering. Min-cuts and normalized cuts. Laplacian matrix. Fiedler vector. Applications.
Practice on 13 Feb 2020
Clustering with scikit-learn (k-means, hierarchical clustering, DBScan, MeanShift, Spectral Clustering). Parameters tuning and results' evaluation. Continued.