Матричные вычисления 20/21 — различия между версиями

Материал из Wiki - Факультет компьютерных наук
Перейти к: навигация, поиск
(О курсе)
(Лекции)
Строка 40: Строка 40:
 
Разделение переменных и скелетное разложение. Сингулярное разложение матриц. Теорема Эккарта-Янга-Мирского.  
 
Разделение переменных и скелетное разложение. Сингулярное разложение матриц. Теорема Эккарта-Янга-Мирского.  
 
Ортопроекторы. Простейший рандомизированный алгоритм поиска малорангового приближения матриц.
 
Ортопроекторы. Простейший рандомизированный алгоритм поиска малорангового приближения матриц.
 +
 +
'''3. Малоранговая аппроксимация матриц 2''' [https://yadi.sk/i/r3J39_a6KexeNA Записи с лекции], [https://yadi.sk/i/D0jYHzi64B5EZg Слайды (метод крестовой аппроксимации)]
 +
 +
CUR разложение матриц. Метод крестовой аппроксимации матриц. ALS (Alternating Least Square) алгоритм для матричной факторизации.
  
 
=== Домашние задания ===
 
=== Домашние задания ===

Версия 15:23, 15 сентября 2020

О курсе

Курс по выбору для студентов для студентов 3 и 4 курса в 1-2 модулях.

Лектор: Рахуба Максим Владимирович

Лекции проходят на Покровке по вторникам в ауд. D510 (09:30 - 10:50)

Семинарист: Высоцкий Лев Игоревич

Семинары проходят онлайн по пятницам (13:00 - 14:20) Ссылка на регулярную Zoom-конференцию: https://zoom.us/j/91934043735

Ассистент курса: Фёдоров Андрей Александрович

Домашние задания необходимо присылать на почту aafedorov_2@edu.hse.ru

Полезные ссылки

Телеграм-канал курса: https://t.me/joinchat/AAAAAFkvC-gUnDmoK-YY2w

Телеграм-чат курса: https://t.me/joinchat/AiDEvBgUTMjcfkWpD8NMWA

Anytask курса: https://anytask.org/course/706

План курса

Еженедельные тесты

На каждом семинаре (начиная с первого) будет проходить короткий тест по теме последней лекции.

Лекции

1. Основы матричного анализа Записи с лекции

Матричные нормы. Сохранение длин и унитарные матрицы. Разложение Шура. Нормальные матрицы.

2. Малоранговая аппроксимация матриц Записи с лекции

Разделение переменных и скелетное разложение. Сингулярное разложение матриц. Теорема Эккарта-Янга-Мирского. Ортопроекторы. Простейший рандомизированный алгоритм поиска малорангового приближения матриц.

3. Малоранговая аппроксимация матриц 2 Записи с лекции, Слайды (метод крестовой аппроксимации)

CUR разложение матриц. Метод крестовой аппроксимации матриц. ALS (Alternating Least Square) алгоритм для матричной факторизации.

Домашние задания

Домашнее задание 1 Папка с заданием

Задание состоит из теоретических задач в pdf файле и практической задачи в Jupyter Notebook (не забудьте дополнительно скачать файл с видео из папки).

Выдается: 02.09.20 Дедлайн: 17.09.20 в 21:59

Контрольная работа

Проведение: предварительно - вторая неделя 2-го модуля.

Экзамен

Устный экзамен в аудитории, разрешается пользоваться рукописным листком А4 при подготовке.

Итоговая оценка за курс

Итог = Округление(min(10, 0.4 * ДЗ + 0.1 * Б + 0.1 * ПР + 0.2 * КР + 0.3 * Э))

ДЗ –– средняя оценка за домашние задания Б –– средняя оценка за бонусные задачи в ДЗ ПР — средняя оценка за самостоятельные работы на семинарах КР –– оценка за контрольную работу (проводится в первой половине 2-го модуля) Э –– устный экзамен

Округление арифметическое

Автоматы не предусмотрены

Литература

1) Golub, G. H., & Van Loan, C. F. (2013). Matrix Computations 4th Edition. The Johns Hopkins University Press. Baltimore.

2) Тыртышников, Е. Е. (2007). Методы численного анализа. Академия, Москва.

3) Trefethen, L. N., & Bau III, D. (1997). Numerical linear algebra. (Vol. 50). Siam. Philadelphia.