Алгебра на ПМИ 2018/2019 (основной поток) — различия между версиями

Материал из Wiki - Факультет компьютерных наук
Перейти к: навигация, поиск
Строка 22: Строка 22:
 
| <center>2</center> || Дмитрий Витальевич Трушин ||  ||  || ||  ||
 
| <center>2</center> || Дмитрий Витальевич Трушин ||  ||  || ||  ||
 
|-
 
|-
| <center>3</center> || Сергей Александрович Гайфуллин || ||  ||  || ||
+
| <center>3</center> || Сергей Александрович Гайфуллин || ||  ||  ||18:10&ndash;19:30, ауд. 623 ||
 
|-
 
|-
 
| <center>4</center> || Станислав Николаевич Федотов || || || || ||
 
| <center>4</center> || Станислав Николаевич Федотов || || || || ||

Версия 00:44, 2 апреля 2019

Преподаватели и учебные ассистенты

Группа БПМИ183 БПМИ185 БПМИ186 БПМИ187 БПМИ188 БПМИ189
Лектор Роман Сергеевич Авдеев
Семинарист Дмитрий Витальевич Трушин Роман Сергеевич Авдеев Сергей Александрович Гайфуллин Станислав Николаевич Федотов Антон Андреевич Шафаревич Роман Сергеевич Авдеев
Ассистент Никита Башаев Наталья Доброхотова-Майкова Марат Саидов Лев Ходжоян Аделина Бакиева Андрей Гусев

Расписание консультаций

Преподаватель/ассистент понедельник вторник среда четверг пятница
1
Роман Сергеевич Авдеев 15:40–17:40, ауд. 623 15:40–16:30, 18:10–19:00, ауд. 623
2
Дмитрий Витальевич Трушин
3
Сергей Александрович Гайфуллин 18:10–19:30, ауд. 623
4
Станислав Николаевич Федотов
5
Антон Андреевич Шафаревич
6
Никита Башаев
7
Наталья Доброхотова-Майкова
8
Марат Саидов
9
Лев Ходжоян 13:40–18:00
10
Аделина Бакиева
11
Андрей Гусев

Порядок формирования оценок

Накопленная оценка вычисляется по следующей формуле:

Oнакопленная = 0,6 * Oдз + 0,4 * Oк/р,

где Oдз1 — оценка за домашние задания, Oк/р — оценка за контрольную работу.

Итоговая оценка выражается через накопленную и оценку за экзамен следующим образом:

Oитоговая = 0,5 * Oнакопленная + 0,5 * Оэкз.

Округление производится только для итоговой оценки. Способ округления — арифметический.

Краткое содержание лекций

Лекция 1 (1.04.2019). Бинарные операции. Полугруппы, моноиды, группы, коммутативные (абелевы) группы. Порядок группы. Примеры групп. Подгруппы. Описание всех подгрупп в группе целых чисел по сложению. Циклические подгруппы. Порядок элемента группы. Связь между порядком элемента и порядком порождаемой им циклической подгруппы. Циклические группы. Левые смежные классы группы по подгруппе, разбиение группы на левые смежные классы. Индекс подгруппы, теорема Лагранжа.

Листки с задачами

Листок с задачами к лекции N содержит в себе N-е домашнее задание.

Задачи к лекции 1

Контрольная работа

Экзамен

Формат экзамена: устный, по билетам (в каждом по два вопроса из программы)

Ведомости текущего контроля

Литература

  • Э.Б. Винберг. Курс алгебры. М.: Факториал Пресс, 2002.
  • А.И. Кострикин. Введение в алгебру. Основы алгебры. М.: Наука. Физматлит, 1994.
  • А.И. Кострикин. Введение в алгебру. Основные структуры алгебры. М.: Наука. Физматлит, 2000.
  • Сборник задач по алгебре под редакцией А.Н. Кострикина. Новое издание. М.: МЦНМО, 2009.
  • Р. Лидл, Г. Нидеррайтер. Конечные поля (2 тома). М.: Мир, 1988.
  • И.В. Аржанцев. Базисы Грёбнера и системы алгебраических уравнений. М.: МЦНМО, 2003.