Intro to DL Blended — различия между версиями
Материал из Wiki - Факультет компьютерных наук
Zimovnov (обсуждение | вклад) |
Zimovnov (обсуждение | вклад) |
||
Строка 11: | Строка 11: | ||
'''Additional project:''' | '''Additional project:''' | ||
− | Homework with Kaggle competition | + | Homework with Kaggle competition: https://docs.google.com/document/d/1kTMYq21UFqZOqftjKAPq8G7RRkO7kX3MomsVIVhW830/edit?usp=sharing |
Release date: 10-03-2019 | Release date: 10-03-2019 | ||
− | Deadline: 24-03-2019 | + | Deadline: 24-03-2019 03:00 |
'''Exam:''' | '''Exam:''' | ||
Строка 31: | Строка 31: | ||
1. Keras Tutorial https://colab.research.google.com/drive/1HoEsK580KAzMGuvFyYwUFdnRzuZ_hC13 | 1. Keras Tutorial https://colab.research.google.com/drive/1HoEsK580KAzMGuvFyYwUFdnRzuZ_hC13 | ||
− | |||
− | |||
− | |||
− |
Версия 15:06, 10 марта 2019
Course program:
https://www.hse.ru/data/2018/06/05/1150113338/program-2129241367-JndYcQjSAq.pdf
Grading:
Cumulative grade = 80% online course + 20% additional project
Final grade = 75% cumulative grade + 25% final exam
Additional project:
Homework with Kaggle competition: https://docs.google.com/document/d/1kTMYq21UFqZOqftjKAPq8G7RRkO7kX3MomsVIVhW830/edit?usp=sharing
Release date: 10-03-2019
Deadline: 24-03-2019 03:00
Exam:
In writing, theoretical questions, for instance:
- SGD variations: Moment, RMSProp, Adam with explanation
- Description of backprop and proof of its efficiency
- Gradient of a dense layer in matrix notation (with proof)
- Typical CNN architecture, purpose of each layer, how to do backprop
- Inception V3 architecture choices
- Description of auto-encoder, application to images
- Gradient of RNN cell (with proof)
Семинары:
1. Keras Tutorial https://colab.research.google.com/drive/1HoEsK580KAzMGuvFyYwUFdnRzuZ_hC13