Intro to DL Blended — различия между версиями

Материал из Wiki - Факультет компьютерных наук
Перейти к: навигация, поиск
Строка 27: Строка 27:
 
# Description of auto-encoder, application to images
 
# Description of auto-encoder, application to images
 
# Gradient of RNN cell (with proof)
 
# Gradient of RNN cell (with proof)
 +
 +
https://colab.research.google.com/drive/1HoEsK580KAzMGuvFyYwUFdnRzuZ_hC13

Версия 17:03, 5 марта 2019

Course program:

https://www.hse.ru/data/2018/06/05/1150113338/program-2129241367-JndYcQjSAq.pdf

Grading:

Cumulative grade = 80% online course + 20% additional project

Final grade = 75% cumulative grade + 25% final exam

Additional project:

Homework with Kaggle competition

Release date: 10-03-2019

Deadline: 24-03-2019

Exam:

In writing, theoretical questions, for instance:

  1. SGD variations: Moment, RMSProp, Adam with explanation
  2. Description of backprop and proof of its efficiency
  3. Gradient of a dense layer in matrix notation (with proof)
  4. Typical CNN architecture, purpose of each layer, how to do backprop
  5. Inception V3 architecture choices
  6. Description of auto-encoder, application to images
  7. Gradient of RNN cell (with proof)

https://colab.research.google.com/drive/1HoEsK580KAzMGuvFyYwUFdnRzuZ_hC13