Intro to DL Blended — различия между версиями

Материал из Wiki - Факультет компьютерных наук
Перейти к: навигация, поиск
Строка 21: Строка 21:
 
# Typical CNN architecture, purpose of each layer, how to do backprop
 
# Typical CNN architecture, purpose of each layer, how to do backprop
 
# Inception V3 architecture choices
 
# Inception V3 architecture choices
 +
# Description of auto-encoder, application to images
 
# Gradient of RNN cell (with proof)
 
# Gradient of RNN cell (with proof)

Версия 20:37, 3 марта 2019

Course program:

https://www.hse.ru/data/2018/06/05/1150113338/program-2129241367-JndYcQjSAq.pdf

Grading:

Cumulative grade = 80% online course + 20% additional project

Final grade = 75% cumulative grade + 25% final exam

Additional project:

Homework with Kaggle competition

Exam:

In writing, theoretical questions, for instance:

  1. SGD variations: Moment, RMSProp, Adam with explanation
  2. Description of backprop and proof of its efficiency
  3. Gradient of a dense layer in matrix notation (with proof)
  4. Typical CNN architecture, purpose of each layer, how to do backprop
  5. Inception V3 architecture choices
  6. Description of auto-encoder, application to images
  7. Gradient of RNN cell (with proof)