Intro to DL Blended — различия между версиями
Материал из Wiki - Факультет компьютерных наук
Zimovnov (обсуждение | вклад) (Новая страница: «'''Program:''' https://www.hse.ru/data/2018/06/05/1150113338/program-2129241367-JndYcQjSAq.pdf '''Grading:''' Cumulative grade = 80% online course + 20% addition…») |
Zimovnov (обсуждение | вклад) |
||
Строка 1: | Строка 1: | ||
− | ''' | + | '''Course program:''' |
https://www.hse.ru/data/2018/06/05/1150113338/program-2129241367-JndYcQjSAq.pdf | https://www.hse.ru/data/2018/06/05/1150113338/program-2129241367-JndYcQjSAq.pdf | ||
Строка 8: | Строка 8: | ||
'''Additional project:''' | '''Additional project:''' | ||
Homework with Kaggle competition | Homework with Kaggle competition | ||
+ | |||
+ | '''Exam:''' | ||
+ | In writing, theoretical questions, for instance: | ||
+ | - SGD variations: Moment, RMSProp, Adam with explanation | ||
+ | - Description of backprop and proof of its efficiency | ||
+ | - Gradient of a dense layer in matrix notation (with proof) | ||
+ | - Typical CNN architecture, purpose of each layer, how to do backprop | ||
+ | - Inception V3 architecture choices | ||
+ | - Gradient of RNN cell (with proof) |
Версия 20:30, 3 марта 2019
Course program: https://www.hse.ru/data/2018/06/05/1150113338/program-2129241367-JndYcQjSAq.pdf
Grading: Cumulative grade = 80% online course + 20% additional project Final grade = 75% cumulative grade + 25% final exam
Additional project: Homework with Kaggle competition
Exam: In writing, theoretical questions, for instance: - SGD variations: Moment, RMSProp, Adam with explanation - Description of backprop and proof of its efficiency - Gradient of a dense layer in matrix notation (with proof) - Typical CNN architecture, purpose of each layer, how to do backprop - Inception V3 architecture choices - Gradient of RNN cell (with proof)