Intro to DL Blended — различия между версиями

Материал из Wiki - Факультет компьютерных наук
Перейти к: навигация, поиск
(Новая страница: «'''Program:''' https://www.hse.ru/data/2018/06/05/1150113338/program-2129241367-JndYcQjSAq.pdf '''Grading:''' Cumulative grade = 80% online course + 20% addition…»)
 
Строка 1: Строка 1:
'''Program:'''
+
'''Course program:'''
 
https://www.hse.ru/data/2018/06/05/1150113338/program-2129241367-JndYcQjSAq.pdf
 
https://www.hse.ru/data/2018/06/05/1150113338/program-2129241367-JndYcQjSAq.pdf
  
Строка 8: Строка 8:
 
'''Additional project:'''
 
'''Additional project:'''
 
Homework with Kaggle competition
 
Homework with Kaggle competition
 +
 +
'''Exam:'''
 +
In writing, theoretical questions, for instance:
 +
- SGD variations: Moment, RMSProp, Adam with explanation
 +
- Description of backprop and proof of its efficiency
 +
- Gradient of a dense layer in matrix notation (with proof)
 +
- Typical CNN architecture, purpose of each layer, how to do backprop
 +
- Inception V3 architecture choices
 +
- Gradient of RNN cell (with proof)

Версия 20:30, 3 марта 2019

Course program: https://www.hse.ru/data/2018/06/05/1150113338/program-2129241367-JndYcQjSAq.pdf

Grading: Cumulative grade = 80% online course + 20% additional project Final grade = 75% cumulative grade + 25% final exam

Additional project: Homework with Kaggle competition

Exam: In writing, theoretical questions, for instance: - SGD variations: Moment, RMSProp, Adam with explanation - Description of backprop and proof of its efficiency - Gradient of a dense layer in matrix notation (with proof) - Typical CNN architecture, purpose of each layer, how to do backprop - Inception V3 architecture choices - Gradient of RNN cell (with proof)