Statistical learning theory 2018 2019 — различия между версиями
Bbauwens (обсуждение | вклад) |
Bbauwens (обсуждение | вклад) |
||
Строка 4: | Строка 4: | ||
The [https://www.dropbox.com/s/8iivgt3a96yw308/syllabus_StatisticalLearning_Bach_2018_2019.pdf?dl=0 syllabus] | The [https://www.dropbox.com/s/8iivgt3a96yw308/syllabus_StatisticalLearning_Bach_2018_2019.pdf?dl=0 syllabus] | ||
+ | [https://www.dropbox.com/s/dh2n9cmhpmx97nj/colloqQuest.pdf?dl=0 Questions colloquium on 29 October.] | ||
Deadline homework 1: October 2nd. Questions: see seminars [https://www.dropbox.com/s/jb9mriumhtdpn8m/03sem.pdf?dl=0 3] and [https://www.dropbox.com/s/l2d9f7u77smrx4u/04sem.pdf?dl=0 4]. | Deadline homework 1: October 2nd. Questions: see seminars [https://www.dropbox.com/s/jb9mriumhtdpn8m/03sem.pdf?dl=0 3] and [https://www.dropbox.com/s/l2d9f7u77smrx4u/04sem.pdf?dl=0 4]. | ||
Строка 13: | Строка 14: | ||
[https://www.dropbox.com/s/dy9yu1ro4k5miet/List%20of%20Students_Bruno.xlsx?dl=0 Marks] | [https://www.dropbox.com/s/dy9yu1ro4k5miet/List%20of%20Students_Bruno.xlsx?dl=0 Marks] | ||
− | Intermediate exams: | + | Intermediate exams: October 29th. |
== Course materials == | == Course materials == |
Версия 19:53, 19 октября 2018
General Information
The syllabus
Questions colloquium on 29 October.
Deadline homework 1: October 2nd. Questions: see seminars 3 and 4.
Deadline homework 2: October 27nd.
Deadline homework 3: TBA.
Intermediate exams: October 29th.
Course materials
Date | Summary | Lecture notes | Problem list | Solutions |
---|---|---|---|---|
3 Sept | PAC-learning in the realizable setting definitions | lecture1.pdf updated 23/09 | Problem list 1 | |
10 Sept | VC-dimension and growth functions | lecture2.pdf updated 23/09 | Problem list 2 | |
17 Sept | Proof that finite VC-dimension implies PAC-learnability | lecture3.pdf updated 23/09 | Problem list 3 | |
24 Sept | Applications to decision trees and threshold neural networks. Agnostic PAC-learnability. | lecture4.pdf | Problem list 4 | |
1 Oct | Agnostic PAC-learnability is equivalent with finite VC-dimension, structural risk minimization | lecture5.pdf 14/10 | Problem list 5 | |
9 Oct | Boosting, Mohri's book pages 121-131. | Problem list 6 | ||
15 Oct | Rademacher complexity and contraction lemma (=Talagrand's lemma), Mohri's book pages 33-41 and 78-79 | lecture7.pdf | Problem list 7 |
A gentle introduction to the materials of the first 3 lectures and an overview of probability theory, can be found in chapters 1-6 and 11-12 of the following book: Sanjeev Kulkarni and Gilbert Harman: An Elementary Introduction to Statistical Learning Theory, 2012.
Afterward, we hope to cover chapters 1-8 from the book: Foundations of machine learning, Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalker, 2012. These books can be downloaded from http://gen.lib.rus.ec/ .
Office hours
Person | Monday | Tuesday | Wednesday | Thursday | Friday | |
---|---|---|---|---|---|---|
Bruno Bauwens | 16:45–19:00 | 15:05–18:00 | Room 620 |
Russian texts
The following links might help students who have trouble with English. A lecture on VC-dimensions was given by K. Vorontsov. A course on Statistical Learning Theory by Nikita Zhivotovsky is given at MIPT. Some short description about PAC learning on p136 in the book ``Наука и искусство построения алгоритмов, которые извлекают знания из данных, Петер Флах. On machinelearning.ru you can find brief and clear definitions.