Statistical learning theory 2018 2019 — различия между версиями

Материал из Wiki - Факультет компьютерных наук
Перейти к: навигация, поиск
Строка 31: Строка 31:
 
! !! Person !! Monday !! Tuesday !! Wednesday !! Thursday !! Friday !!  
 
! !! Person !! Monday !! Tuesday !! Wednesday !! Thursday !! Friday !!  
 
|-
 
|-
| <center>1</center> || Bruno Bauwens ||  || 16:45&ndash;19:00 || 15:05&ndash;18:00 || ||  || Room&nbsp;620  
+
| <center>1</center> || Bruno Bauwens ||  16:45&ndash;19:00 || 15:05&ndash;18:00 || || ||  || Room&nbsp;620  
 
|-
 
|-
 
|}
 
|}

Версия 17:39, 3 сентября 2018

General Information

The syllabus


Course materials

Date Summary Lecture notes Problem list Solutions
3 sept PAC-learning in the realizable setting definitions Problem list 1

A gentle introduction to the materials of the first 3 lectures and an overview of probability theory, can be found in chapters 1-6 and 11-12 of the following book: Sanjeev Kulkarni and Gilbert Harman: An Elementary Introduction to Statistical Learning Theory, 2012.

Afterwards, we hope to cover chapters 1-8 from the book: Foundations of machine learning, Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalker, 2012. These books can downloaded from http://gen.lib.rus.ec/ .


Office hours

Person Monday Tuesday Wednesday Thursday Friday
1
Bruno Bauwens 16:45–19:00 15:05–18:00 Room 620


Russian texts

The following links might help students who have trouble with English. A lecture on VC-dimensions was given by K. Vorontsov. A course on Statistical Learning Theory by Nikita Zhivotovsky is given at MIPT. Some short description about PAC learning on p136 in the book ``Наука и искусство построения алгоритмов, которые извлекают знания из данных, Петер Флах. On machinelearning.ru you can find brief and clear definitions.