Майнор Интеллектуальный анализ данных/Введение в анализ данных/ИАД 2 — различия между версиями

Материал из Wiki - Факультет компьютерных наук
Перейти к: навигация, поиск
Строка 22: Строка 22:
  
 
== Полезные ссылки (Будут пополняться) ==
 
== Полезные ссылки (Будут пополняться) ==
 +
''' Семинар 3 '''
 +
# [http://www.visiondummy.com/2014/04/curse-dimensionality-affect-classification/ Curse of Dimensionality]
 +
 
''' Семинар 2 '''
 
''' Семинар 2 '''
 
# [http://www.r2d3.us/visual-intro-to-machine-learning-part-1/ Visual Intro to ML]
 
# [http://www.r2d3.us/visual-intro-to-machine-learning-part-1/ Visual Intro to ML]

Версия 00:35, 1 февраля 2017

Майнор по Анализу Данных -- ИАД-2

На данной странице будут вывешиваться последние новости и материалы для семинарских занятий группы ИАД-2

Семинарист: Шестаков Андрей shestakoffandrey@gmail.com
Ассистент: Чеснокова Полина
При обращении по почте, начинайте тему письма со слов [Майнор ИАД-2 2017]

Страница курса

Анонимные комментарии, замечания и пожелания можно оставить здесь

Семинары

1) 18 Января 2017: Введение + Повторение Python - IPython Notebook (Что успели)
2) 25 Января 2017: Спасательная операция по Numpy и Pandas - IPython Notebook (Что успели)
2) 1 Февраля 2017: ВНИМАНИЕ! СЕМИНАР СОСТОИТСЯ В 10:30

Домашние Задания

Soon..


Полезные ссылки (Будут пополняться)

Семинар 3

  1. Curse of Dimensionality

Семинар 2

  1. Visual Intro to ML
  2. ML in nutcell

Семинар 1 Pandas & Seaborn

  1. Pandas - На самом деле содержит всю необходимую инфу с примерами
  2. Effective Pandas - Учебник\туториал по Pandas
  3. NumPY, Pandas Cheat-Sheet
  4. Learning Data Science with Python - Неплохой практический курс по Python для анализа данных (MUST)
  5. Pandas Visualization
  6. Seaborn

Наборы данных

  1. Портал Открытых Данных РФ
  2. Funny Datasets
  3. Сборник Открытых Данных (!!!)
  4. Еще наборы данных

Python and etc.

  1. PEP-8 Code Style Guide Cheat-sheet
  2. Python Tutorials Point
  3. Matplotlib Tutorial
  4. Matrix Manipulation Cheat-sheet
  5. Ipython Notebook
  6. Beaker Notebook
  7. yhat Rodeo

Ресурсы и Книги

  1. James, Witten, Hastie, Tibshirani — An Introduction to Statistical Learning
  2. Bishop — Pattern Recognition and Machine Learning (первые главы)
  3. MachineLearning.ru
  4. Kaggle
  5. [1]
  6. UCI Repo

Онлайн Курсы

  1. Andrew Ng's Course
  2. Introduction to ML
  3. Курс от ВШЭ
  4. Обзор МООС Курсов